I Colóquio de Matemática da Região Nordeste

Funções Holomorfas de uma Variável

Evilson Vieira

28/02 a 04/03 de 2011
Universidade Federal de Sergipe
Este texto originou-se a partir das notas do mini-curso “Funções de uma Variável Complexa”, ministrado pelo autor no **I Colóquio de Matemática do Nordeste Brasileiro** realizado na Universidade Federal de Sergipe - UFS em fevereiro de 2011.

O objetivo neste texto é trabalhar os principais teoremas que sustentam a teoria das funções holomorfas de uma variável. Daremos ênfase às técnicas de construção de funções holomorfas a partir de outras previamente conhecidas, usando principalmente sequências, séries e produtórios. Por ser a primeira edição, o texto ainda não contém exercícios. Esperamos que o leitor aprecie o texto.

O Autor
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O corpo C</td>
<td>5</td>
</tr>
<tr>
<td>1.1</td>
<td>Introdução</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Representações de C</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Funções complexas</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Noções Topológicas</td>
<td>17</td>
</tr>
<tr>
<td>2.1</td>
<td>Introdução à topologia de C</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>Sequências, séries e produtórios</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Sequências</td>
<td>19</td>
</tr>
<tr>
<td>3.2</td>
<td>Séries</td>
<td>25</td>
</tr>
<tr>
<td>3.3</td>
<td>Produtórios</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>Limites, continuidade e derivação</td>
<td>37</td>
</tr>
<tr>
<td>4.1</td>
<td>Limites</td>
<td>37</td>
</tr>
<tr>
<td>4.2</td>
<td>Continuidade</td>
<td>42</td>
</tr>
<tr>
<td>4.3</td>
<td>Limites infinitos</td>
<td>42</td>
</tr>
<tr>
<td>4.4</td>
<td>Limites no infinito</td>
<td>43</td>
</tr>
<tr>
<td>4.5</td>
<td>Limites infinitos no infinito</td>
<td>43</td>
</tr>
<tr>
<td>4.6</td>
<td>Derivação complexa</td>
<td>44</td>
</tr>
<tr>
<td>5</td>
<td>Teoria de Cauchy</td>
<td>50</td>
</tr>
<tr>
<td>5.1</td>
<td>Integração</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>Funções Holomorfas</td>
<td>59</td>
</tr>
<tr>
<td>6.1</td>
<td>Sequências de funções holomorfas</td>
<td>59</td>
</tr>
<tr>
<td>6.2</td>
<td>Séries de funções holomorfas</td>
<td>60</td>
</tr>
<tr>
<td>6.3</td>
<td>Séries de potências</td>
<td>60</td>
</tr>
<tr>
<td>6.4</td>
<td>Representação em série de potências</td>
<td>63</td>
</tr>
<tr>
<td>6.5</td>
<td>Produtórios de funções holomorfas</td>
<td>68</td>
</tr>
<tr>
<td>6.6</td>
<td>Zeros de funções holomorfas</td>
<td>68</td>
</tr>
</tbody>
</table>
1.1 Introdução

Considere um número imaginário “i” que satisfaz à seguinte propriedade:

\[i^2 = -1 \]

O conjunto dos números complexos é o conjunto

\[\mathbb{C} = \{ a + bi | a, b \in \mathbb{R} \} \]

a é chamado “parte real” e b é chamado “parte imaginária” do número \(z = a + bi \).

Em \(\mathbb{C} \) estão definidas as operações de “soma” e “produto”:

\[
\begin{align*}
(a + bi) + (c + di) &= (a + c) + (b + d)i \\
(a + bi) \cdot (c + di) &= (ac - bc) + (ad + bc)i
\end{align*}
\]

O conjunto dos números reais \(\mathbb{R} \) pode ser visto como um subconjunto de \(\mathbb{C} \) dos números complexos da forma \(a + 0i \). Assim, a estrutura de corpo de \(\mathbb{R} \) estende-se a \(\mathbb{C} \) naturalmente. Veja que a soma e o produto descritos acima para números da forma \(a + 0i \) coincidem com a soma e o produto convencionais em \(\mathbb{R} \).

Neste capítulo faremos uma breve apresentação sobre a estrutura de corpo de \(\mathbb{C} \).

1.2 Representações de \(\mathbb{C} \)

Em geral, usamos o plano real \(\mathbb{R}^2 \) com coordenadas cartesionas ou polares para representar o conjunto \(\mathbb{C} \). Em coordenadas cartesionas o ponto \((x, y)\) do plano representa o número complexo

\[z = x + iy \]

Em coordenadas polares o ponto \((\rho, \theta)\) do plano representa o número complexo

\[z = \rho \cdot (\cos(\theta) + i \sin(\theta)) \]
Essas duas representações tem as seguintes relações:

a) \(\rho = \sqrt{x^2 + y^2} \)

b) \(x = \rho \cdot \cos(\theta) \Rightarrow \cos(\theta) = \frac{x}{\sqrt{x^2 + y^2}} \)

c) \(y = \rho \cdot \sen(\theta) \Rightarrow \sen(\theta) = \frac{y}{\sqrt{x^2 + y^2}} \)

Essas representações nos dão a ideia de “norma” ou “módulo” de um número complexo, que é a distância euclidiana de \(z \) à origem, ou seja,

\[|z| = |x + iy| = \sqrt{x^2 + y^2} = \rho \]

Na sessão 1.3 estudaremos um pouco mais sobre módulos de números complexos. O número \(\theta \) é chamado argumento de \(z \).

Associando-se o número complexo \(a + bi \) ao vetor \(\begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2 \), podemos interpretar a soma em \(\mathbb{C} \) como a soma em \(\mathbb{R}^2 \) como espaço vetorial. Veja:

\[
\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} x + u \\ y + v \end{bmatrix}
\]

E a multiplicação em \(\mathbb{C} \) pode ser interpretada da seguinte maneira

\[
(x + yi) \cdot (u + vi) = (xu - yv) + (xv + yu)i
\]

Ou seja, trocando se o primeiro fator \(\begin{bmatrix} x \\ y \end{bmatrix} \) pela matriz \(\begin{bmatrix} x & -y \\ y & x \end{bmatrix} \)

Escrevendo \(z \) no forma polar

\[x + yi = \rho \cdot (\cos(\theta) + i \sen(\theta)) \]

temos:

\[
\begin{bmatrix} x & -y \\ y & x \end{bmatrix} = \sqrt{x^2 + y^2} \cdot \begin{bmatrix} \frac{x}{\sqrt{x^2 + y^2}} & -\frac{y}{\sqrt{x^2 + y^2}} \\ \frac{y}{\sqrt{x^2 + y^2}} & \frac{x}{\sqrt{x^2 + y^2}} \end{bmatrix}
\]

Ou seja, multiplicar \(z \) por \(w \) equivale a girar \(w \) no sentido anti-horário (contrário ao movimento do relógio) a um ângulo igual ao argumento de \(z \) e em seguida multiplicar o resultado pela norma de \(z \).

Isso pode ser melhor percebido quando escrevemos \(u + iv \) também em coordenadas polares

\[u + iv = \eta \cdot (\cos(\alpha) + i \sen(\alpha)) \]
\[(x + iy) \cdot (u + iv) = [\eta (\cos(\alpha) + i \sin(\alpha))] \cdot [\rho (\cos(\theta) + i \sin(\theta))]\]
\[= \eta \rho (\cos(\alpha + i \sin(\alpha)) \cdot (\cos(\theta) + i \sin(\theta)))\]
\[= \eta \rho [\cos(\alpha) (\cos(\theta) - \sin(\alpha) \sin(\theta)) + i (\sin(\alpha) (\cos(\theta) + \cos(\alpha) \sin(\theta)))]\]
\[= \eta \rho (\cos(\alpha + \theta) + i \sin(\alpha + \theta))\]

Ou seja, \(|zw| = |z||w|\) e o argumento do produto é a soma dos argumentos dos fatores.

Veja que, se \(zw = 1\) então \(\eta \rho = 1\) e \(\alpha + \theta = 0\). Neste caso \(w = z^{-1}\), portanto temos:

\[z^{-1} = \rho^{-1}(\cos(-\theta) + i \sin(-\theta)) = \rho^{-1}(\cos(\theta) - i \sin(\theta))\]

Estas fórmulas nos dão uma fórmula para a potenciação inteira.

\[z^n = \rho^n(\cos(n\theta) + i \sin(n\theta)) , \forall n \in \mathbb{Z}\]

A identificação de \(\mathbb{C}\) com o espaço vetorial \(\mathbb{R}^2\) traz a \(\mathbb{C}\) a “desigualdade triangular”, que significa exatamente o que o nome sugere: um lado de um triângulo é no máximo igual à soma dos outros dois.

Em \(\mathbb{C}\), essa desigualdade é traduzida por

\[|z + w| \leq |z| + |w| , \forall z, w \in \mathbb{C}\]

Veja a ilustração na figura 1.1

![Figura 1.1: Desigualdade triangular](image)

Essa desigualdade estende indutivamente a somas finitas quaisquer:

\[|z_1 + z_2 + \cdots + z_k| \leq |z_1| + |z_2| + \cdots + |z_k|\]

Veja uma ilustração para a soma de três números na Figura 1.2.

1.3 Funções complexas

Nesta seção apresentamos as principais funções usadas com variáveis complexas. Elas possuem algumas sutilezas, mas lidamos com elas de forma similar ao que fazemos com funções reais.
Figura 1.2: Desigualdade triangular para a soma de três números

Re e Im

Considere o número complexo \(z = x + iy \). As funções Re e Im são definidas da seguinte forma.

\[
\begin{align*}
\text{Re}(z) &= x \\
\text{Im}(z) &= y
\end{align*}
\]

Re\((z)\) retorna a parte real do número complexo \(z \) enquanto Im\((z)\) retorna a parte imaginária de \(z \). Observe que essas funções sempre retornam um número real.

Exemplo 1.1. Exemplos das funções Re e Im:

- \(\text{Re}(2 + i) = 2 \)
- \(\text{Im}(2 + i) = 1 \)
- \(\text{Re}(\sqrt{7} - i\pi) = \sqrt{7} \)
- \(\text{Im}(\sqrt{7} - i\pi) = -\pi \)
- \(\text{Re}(-i) = 0 \)
- \(\text{Im}(-i) = -1 \)

Nota 1.2. Para todo número complexo \(z \) temos

\[z = \text{Re}(z) + i \text{Im}(z) \]

As funções Re e Im são R-lineares, ou seja, satisfazem às seguintes propriedades:

i) Se \(z \) e \(w \) são números complexos então

\[
\begin{align*}
\text{Re}(z + w) &= \text{Re}(z) + \text{Re}(w) \\
\text{Im}(z + w) &= \text{Im}(z) + \text{Im}(w)
\end{align*}
\]

ii) Se \(t \) é um número real e \(z \) é um número complexo então

\[
\begin{align*}
\text{Re}(tz) &= t \text{Re}(z) \\
\text{Im}(tz) &= t \text{Im}(z)
\end{align*}
\]

(O fato de esta propriedade ser válida para valores reais de \(t \) é o motivo pelo qual dizemos que estas funções são R-lineares)

A verificação é imediata. Veja:

Ponhamos \(z = a + ib \) e \(w = c + id \) então:

O caso i):

\[
\begin{align*}
\text{Re}(z + w) &= \text{Re}((a + c) + i(b + d)) \\
&= a + c \\
&= \text{Re}(z) + \text{Re}(w)
\end{align*}
\]

\[
\begin{align*}
\text{Im}(z + w) &= \text{Im}((a + c) + i(b + d)) \\
&= b + d \\
&= \text{Im}(z) + \text{Im}(w)
\end{align*}
\]

O caso ii):

\[
\begin{align*}
\text{Re}(tz) &= \text{Re}(ta + itb) \\
&= ta \\
&= t \text{Re}(z)
\end{align*}
\]

\[
\begin{align*}
\text{Im}(tz) &= \text{Im}(ta + itb) \\
&= tb \\
&= t \text{Im}(z)
\end{align*}
\]
Note quem, em geral, não valem:
\[\text{Re}(z \cdot w) = \text{Re}(z) \cdot \text{Re}(w) \]
\[\text{Im}(z \cdot w) = \text{Im}(z) \cdot \text{Im}(w). \]

A conjugação complexa

A conjugação complexa é a função que associa o número complexo \(z = x + iy \) ao número complexo \(\overline{z} = x - iy \).

Dizemos que \(\overline{z} \) é o “conjugado complexo” de \(z \), ou apenas o “conjugado” de \(z \).

Exemplo 1.3. Exemplos de conjugação complexa:

- \(\overline{\overline{2} + i} = 2 - i \)
- \(\overline{\sqrt{7} - i\pi} = \sqrt{7} + i\pi \)
- \(\overline{2i} = 2i \)
- \(\overline{17} = 17 \)

Nota 1.4. Para todo número complexo \(z \) temos

\[\overline{z} = \text{Re}(z) - i \text{Im}(z) \]

Portanto, a conjugação complexa é, também, uma função \(\mathbb{R} \)-linear, ou seja, satisfaz as seguintes condições:

i) Se \(z \) e \(w \) são números complexos então \(\overline{z + w} = \overline{z} + \overline{w} \);

ii) Se \(t \) é um número real e \(z \) é um número complexo então \(\overline{tz} = t\overline{z} \);

A verificação é imediata, basta usar a verificação das propriedades i) e ii) das funções \(\text{Re} \) e \(\text{Im} \) vistas na seção anterior. Veja:

O caso i):

\[
\overline{z + w} = \text{Re}(z + w) - i \text{Im}(z + w) \\
= \text{Re}(z) + \text{Re}(w) - i \text{Im}(z) - i \text{Im}(w) \\
= (\text{Re}(z) - i \text{Im}(z)) + (\text{Re}(w) - i \text{Im}(w)) \\
= \overline{z} + \overline{w}
\]

O caso ii):

\[
\overline{tz} = \text{Re}(tz) - i \text{Im}(tz) \\
= t\text{Re}(z) - i t\text{Im}(z) \\
= t(\text{Re}(z) - i \text{Im}(z)) \\
= t\overline{z}
\]

Com as informações das notas 1.2 e 1.4 temos:

\[
\begin{aligned}
z + \overline{z} &= 2 \text{Re}(z) \\
2i \overline{z} &= 2i \text{Im}(z)
\end{aligned}
\]

Com isso temos as seguintes relações:

\[
\begin{aligned}
\text{Re}(z) &= \frac{z + \overline{z}}{2} \\
\text{Im}(z) &= \frac{z - \overline{z}}{2i}
\end{aligned}
\]
O valor absoluto

A função “valor absoluto” associa a cada número complexo \(z \) seu “módulo” \(|z|\) que é um número real não-negativo, sendo que \(|z| = 0\), somente quando \(z = 0 \). É comum chamarmos o número real \(|z|\) de “norma” de \(z \).

Como vimos na seção 1.2 se temos o número complexo \(z = x + iy \) então podemos calcular seu valor absoluto da seguintes forma:

\[
|z| = \sqrt{x^2 + y^2}
\]

Considere \(z \) e \(w \) números complexos arbitrários. A função valor absoluto satisfaz às seguintes propriedades:

i) \(|z|^2 = z \cdot \overline{z}\)

ii) \(|z \cdot w| = |z| \cdot |w|\)

A verificação do item i) é imediata. Veja:

\[
z \cdot \overline{z} = (x + iy) \cdot (x - iy) = x^2 - ixy + ixy - iy^2 = x^2 + y^2 = |z|^2
\]

Usamos o resultado do item i) para verificar o item ii). Veja:

\[
|z \cdot w|^2 = (z \cdot w) \cdot \overline{z \cdot w} = z \cdot w \cdot \overline{z} \cdot \overline{w} = z \cdot \overline{z} \cdot w \cdot \overline{w} = |z|^2 \cdot |w|^2 = (|z| \cdot |w|)^2
\]

Na primeira linha usamos o resultado do item i), na segunda linha usamos as propriedades da conjugação complexa, na terceira linha usamos a comutatividade da multiplicação de números complexos e na quarta linha usamos novamente o resultado do item ii).

Temos assim, \(|z \cdot w|^2 = (|z| \cdot |w|)^2\). Portanto \(|z \cdot w| = |z| \cdot |w|\), pois são números reais não-negativos.

Exemplo 1.5. Exemplos do cálculo de valor absoluto de números complexos:

- \(|3 + 4i| = \sqrt{3^2 + 4^2} = \sqrt{25} = 5\)
- \(|i| = \sqrt{1^2 + 0^2} = \sqrt{1} = 1\)
- \(|5 + i| = \sqrt{5^2 + 1^2} = \sqrt{26}\)

A função constante

A função constante é a função que associa todo número complexo a um número complexo pré-fixado, ou seja, é uma função do tipo:

\[
f : \mathbb{C} \rightarrow \mathbb{C} \\
z \mapsto \alpha
\]

Onde \(\alpha \) é fixo. Esta função associa a todo número complexo o número \(\alpha \).

Exemplo 1.6. São exemplos de funções constantes as funções:

- \(f(z) = 5 \)
- \(g(z) = 7i \)
- \(h(z) = 1 - 2\pi i \)
A função identidade

A função identidade é a função que associa todo número complexo a ele mesmo. Ou seja, é a função:

\[f : \mathbb{C} \rightarrow \mathbb{C} \quad z \mapsto z \]

Exemplo 1.7. Se \(f(z) \) é a função identidade então:

* \(f(2) = 2 \)
* \(f(3i) = 3i \)
* \(f(\sqrt{3} + i\pi) = \sqrt{3} + i\pi \)

Funções de translação

Uma função de translação é uma função da seguinte forma

\[f : \mathbb{C} \rightarrow \mathbb{C} \quad z \mapsto z + \beta \]

Onde \(\beta \) é um número complexo pré-fixado. Veja que se \(\beta = 0 \) teremos a função identidade, ou seja, a função identidade é uma translação nula.

O que estas funções fazem é transladar os pontos de \(\mathbb{C} \).

Exemplo 1.8. São exemplos de funções de translação:

* \(f(z) = z \)
* \(g(z) = z + 1 \)
* \(h(z) = z - (4 + 5i) \)

Veja na Figura 1.3 o efeito da função \(f(z) = z + (3 + i) \) sobre o quadrado

\[Q = \{ x + iy \in \mathbb{C}; |x| \leq 1 \text{ e } |y| \leq 1 \} \]

![Figura 1.3: Ilustração do efeito da função de translação](image)

O que essa função faz é transladar todos os pontos deste quadrado somando \(3 + i \) a cada ponto. Ou seja, ela translada todo o quadrado, que agora passa a ser centrado no ponto \(3 + i \), veja que o quadrado \(Q \) está centrado na origem (o ponto \(0 + 0i \)).
Funções lineares

Uma função linear é uma função da seguinte forma
\[f : \mathbb{C} \rightarrow \mathbb{C} \]
\[z \mapsto \alpha \cdot z \]

Onde \(\alpha \) é um número complexo pré-fixado, com \(\alpha \neq 0 \). Veja que se \(\alpha = 1 \) teremos a função identidade, ou seja, a função identidade é uma função linear.

Exemplo 1.9. São exemplos de funções lineares:
* \(f(z) = z \)
* \(g(z) = 6iz \)
* \(h(z) = (1 + i)z \)

Veja na Figura 1.4 o efeito da função \(f(z) = (1 + i)z \) sobre o quadrado
\[Q = \{ x + iy \in \mathbb{C} ; |x| \leq 1 \text{ e } |y| \leq 1 \} \]

![Figura 1.4: Ilustração do efeito da função linear](image)

Essa função gira todos os pontos do quadrado \(Q \) em torno da origem no sentido anti-horário a um ângulo de \(\frac{\pi}{4} \) e multiplica o resultado por \(\sqrt{2} \).

Isso acontece porque o número \(1 + i \) tem a forma polar
\[1 + i = \sqrt{2} \left(\cos \left(\frac{\pi}{4} \right) + i \sin \left(\frac{\pi}{4} \right) \right) \]

Funções afins

Uma função afim é uma função da seguinte forma
\[f : \mathbb{C} \rightarrow \mathbb{C} \]
\[z \mapsto \alpha \cdot z + \beta \]

Onde \(\alpha \) e \(\beta \) são números complexos pré-fixados, com \(\alpha \neq 0 \). Veja que se \(\beta = 0 \) teremos uma função linear, ou seja, as funções lineares são funções afins.

Exemplo 1.10. São exemplos de funções afins:
* \(f(z) = iz \)
* \(g(z) = -2iz + 4 \)
* \(h(z) = (1 + i)z - (5 + 3i) \)
Potências inteiras

Como vimos na sessão 1.2, de fixarmos um \(n \in \mathbb{Z} \), então podemos associar a todo número complexo \(z \) sua \(n \)ésima potência \(z^n \). Obtemos assim a função:

\[
f : \mathbb{C} \rightarrow \mathbb{C} \quad z \mapsto z^n
\]

Em coordenadas polares, fica

\[
f : \mathbb{C} \rightarrow \mathbb{C} \quad r(\cos(\theta) + i \sin(\theta)) \mapsto r^n(\cos(n\theta) + i \sin(n\theta))
\]

Fixemos \(n \in \mathbb{Z} \), com \(n > 0 \). Uma pergunta interessante é:

Dado um número complexo \(w \) existem quantos números complexos \(z \) tais que \(z^n = w \)?

Primeiramente, observe que se \((r(\cos(\theta) + i \sin(\theta)))^n = 0 \) então necessariamente \(r = 0 \), e portanto o único número que satisfaz a equação é \(z = 0 \).

Mas se \((r(\cos(\theta) + i \sin(\theta)))^n = \eta(\cos(\alpha) + i \sin(\alpha)) \), com \(\eta \neq 0 \) então temos

\[
\eta = r^n \quad \text{e} \quad \begin{cases}
\cos(n\theta) = \cos(\alpha) \\
\sin(n\theta) = \sin(\alpha)
\end{cases}
\]

Concluimos então que

\[
\begin{cases}
\rho = \sqrt[n]{\eta} \\
n\theta - \alpha = \frac{2k\pi}{n}, \text{ para algum } k \in \mathbb{Z}
\end{cases}
\]

Existem exatamente \(n \) números \(\theta \) no intervalo \([0, 2\pi)\) que satisfazem à segunda igualdade, são eles:

\[
\begin{align*}
\theta_0 &= \frac{\alpha}{n} \\
\theta_1 &= \frac{\alpha}{n} + \frac{2\pi}{n} \\
\theta_2 &= \frac{\alpha}{n} + \frac{2\pi}{n} \cdot 2 \\
\theta_3 &= \frac{\alpha}{n} + \frac{2\pi}{n} \cdot 3 \\
& \vdots \\
\theta_{n-1} &= \frac{\alpha}{n} + \frac{2\pi}{n} \cdot (n-1)
\end{align*}
\]

Isso nos mostra que, a equação \((r(\cos(\theta) + i \sin(\theta)))^n = \eta(\cos(\alpha) + i \sin(\alpha)) \) possui exatamente \(n \) soluções, que são os números do conjunto:

\[
\left\{ \sqrt[n]{\eta} \left(\cos \left(\frac{\alpha}{n} + \frac{2\pi}{n} \cdot k \right) + i \sin \left(\frac{\alpha}{n} + \frac{2\pi}{n} \cdot k \right) \right) \mid k = 0, 1, 2, \ldots, n-1 \right\},
\]

quando \(\eta \neq 0 \).

O interessante é que essas soluções são os vértices do polígono regular de \(n \) lados, centrado no ponto \(0 + 0i \), onde um dos vértices é o ponto \(z_0 = \sqrt[n]{\eta} \left(\cos \left(\frac{\alpha}{n} + \frac{2\pi}{n} \cdot 0 \right) + i \sin \left(\frac{\alpha}{n} + \frac{2\pi}{n} \cdot 0 \right) \right) \) e os outros seguem no sentido anti-horário.

Veja na Figura 1.5 a localização das soluções das equações \(z^6 = 1 \) e \(z^8 = -1 \), a primeira com seis soluções e a segunda com oito soluções.

Então estamos aptos a responder à pergunta do início da sessão. “Se \(n \) é um inteiro não-nulo e \(w \) é um número complexo não-nulo então a equação \(z^n = w \) possui, exatamente, \(n \) soluções.

No caso em que \(n < 0 \) basta resolver a equação \(z^{-n} = w^{-1} \).

Portanto, funções que retornam potências inteiras de números complexos não são injetivas.
Funções polinomiais

Seja \(n \) um inteiro, com \(n \geq 0 \). Uma função polinomial de grau \(n \) é uma função da forma

\[
f(x) = a_n z^n + a_{n-1} z^{n-1} + a_{n-2} z^{n-2} + \cdots + a_2 z^2 + a_1 z + a_0
\]

onde \(a_n, a_{n-1}, a_{n-2}, \ldots, a_2, a_1, a_0 \in \mathbb{C} \), com \(a_n \neq 0 \).

Observe que as funções afins são funções polinomiais de grau 1 e que a função constante é uma função polinomial de grau zero.

Funções racionais

As funções racionais são as funções definidas por

\[
f: A \to \mathbb{C} \\
z \mapsto \frac{p(z)}{q(z)}
\]

onde \(p(z) \) e \(q(z) \) são funções polinomiais e o conjunto \(A \subset \mathbb{C} \) é o conjunto onde \(q(z) \) não se anula.

Note que as funções polinomiais são funções racionais em que polinômio \(q \) é uma constante não-nula.

A exponencial complexa

A exponencial complexa é a função definida por

\[
\exp: \mathbb{C} \to \mathbb{C} \\
x + iy \mapsto e^x (\cos(y) + i \sen(y))
\]

Observe que, restringindo-se a exponencial complexa ao conjunto dos números reais, ela coincide com a exponencial real.

Se \(z = x + iy \) e \(w = u + iv \) onde \(x, y, u, v \) são números reais. Conforme vimos na seção 1.2 temos

Figura 1.5: Ilustração da localização das soluções das equações \(z^6 = 1 \) e \(z^8 = -1 \)
\[
\exp(z) \exp(w) = (e^z (\cos(y) + i \sen(y))) \cdot (e^w (\cos(v) + i \sen(v))) \\
= e^z e^w (\cos(y + v) + i \sen(y + v)) \\
= e^{z+w} (\cos(y + v) + i \sen(y + v)) \\
= \exp(z + w)
\]

Também, se \(n\) é um inteiro positivo, temos
\[
(\exp(z))^n = (e^z (\cos(y) + i \sen(y)))^n \\
= e^{nz} (\cos(ny) + i \sen(ny)) \\
= \exp(nz)
\]

Geralmente denotamos \(e^z\) ao invés de \(\exp(z)\).

cosh e senh

As funções complexas cosh e senh são definidas da mesma forma que são definidas para números reais:

\[
\cosh(z) = \frac{e^z + e^{-z}}{2} \\
\senh(z) = \frac{e^z - e^{-z}}{2}
\]

cos e sen

Seja \(t \in \mathbb{R}\). Usando a fórmula da exponencial temos
\[
e^{it} = \cos(t) + i \sen(t)
\]

Com isso temos o sistema:
\[
\begin{cases}
e^{it} = \cos(t) + i \sen(t) \\
e^{-it} = \cos(t) - i \sen(t)
\end{cases}
\]

Cuja solução é
\[
\cos(t) = \frac{e^{it} + e^{-it}}{2} = \cosh(it) \quad \text{e} \quad \sen(t) = \frac{e^{it} - e^{-it}}{2i} = \frac{1}{i} \senh(it)
\]

Como as funções cosh e senh são definidas em todo o plano complexo, definimos as funções cos e sen no plano complexo por:

\[
\cos(z) = \cosh(iz) = \frac{e^{iz} + e^{-iz}}{2} \\
\sen(z) = \frac{1}{i} \senh(iz) = \frac{e^{iz} - e^{-iz}}{2i}
\]

Exemplo 1.11. Calcular \(\cos(i \log(10))\)

\[
\cos(i \log(10)) = \frac{e^{i \log(10)} + e^{-i \log(10)}}{2} = \frac{1}{2} (e^{-\log(10)} + e^{\log(10)}) = \frac{1}{2} \left(\frac{1}{10} + 10 \right) = \frac{101}{20} = 5,05
\]
O Ramo Principal do Logaritmo Complexo

Consider o conjunto \(U = \{ \rho e^{i\theta} \mid \rho > 0, \theta \in (-\pi, \pi) \} \). Esse é o conjunto obtido quando removemos do plano complexo o zero e os números reais negativos.

O Ramo Principal do logaritmo complexo é a função definida por

\[
\text{Log} : \quad U \rightarrow \mathbb{C} \\
\rho e^{i\theta} \mapsto \log(\rho) + i\theta
\]

Onde \(\log \) é o logaritmo real. Veja que, a restrição do Ramo principal do logaritmo ao conjunto dos números reais é o logaritmo real.

Na sessão 6.4 estudaremos melhor os ramos de logaritmo complexo.
Este capítulo é, praticamente, um glossário dos termos topológicos que usaremos no desenvolvimento do texto nos capítulos seguintes. Damos uma pequena introdução à topologia de \(\mathbb{C} \), ou seja, ao estudo dos subconjuntos de \(\mathbb{C} \).

2.1 Introdução à topologia de \(\mathbb{C} \)

Um número complexo é, também, tratado como um ponto do plano complexo. Assim, subconjuntos de números complexos é, também, um subconjunto de pontos do plano. Com base nisso, temos as seguintes definições:

Definição 2.1. Seja \(z \in \mathbb{C} \) e \(r \in \mathbb{R}^+ \). Denotaremos por \(D(z, r) \) o “disco” centrado em \(z \) de raio \(r \), ou seja,

\[
D(z, r) = \{ w \in \mathbb{C}; |w - z| < r \}
\]

Definição 2.2. Seja \(A \subset \mathbb{C} \). Damos as seguintes definições:

a) \(A \) é “aberto” se, para todo ponto \(z \in A \), existe \(r > 0 \) tal que \(D(z, r) \subset A \).

b) \(A \) é “fechado” se \(\mathbb{C} - A \) é aberto.

c) \(A \) é “limitado” se existe \(R > 0 \) tal que \(A \subset D(z, R) \). Um conjunto que não é limitado é dito “ilimitado”.

d) \(A \) é “compacto” se \(A \) é fechado e limitado.

Em suma, a topologia de qualquer conjunto consiste na identificação dos abertos desse conjunto.

Temos, também, a definição de abertos relativos, como veremos a seguir:

Definição 2.3. Seja \(A \subset \mathbb{C} \) e \(B \subset A \). Então temos:

a) \(B \) é um “aberto” de \(A \) se, existe um aberto \(U \subset \mathbb{C} \) de \(\mathbb{C} \) tal que \(B = U \cap A \).

b) \(B \) é um “fechado” de \(A \) se, existe um fechado \(F \subset \mathbb{C} \) de \(\mathbb{C} \) tal que \(B = F \cap A \).

Definição 2.4. Seja \(A \subset \mathbb{C} \). Um ponto \(z \in A \) é um “ponto interior” de \(A \) se \(\exists r > 0 \) tal que \(D(z, r) \subset A \). O conjunto de todos os pontos interiores de \(A \) é chamado “interior” de \(A \), e é denotado por \(\text{int}(A) \).

Note que um conjunto \(A \subset \mathbb{C} \) é aberto se, e somente se, \(A = \text{int}(A) \).

Definição 2.5. Seja \(z \in \mathbb{C} \) e \(r \in \mathbb{R}^+ \). Denotaremos por \(D^*(z, r) \) o “disco furado” centrado em \(z \) de raio \(r \), ou seja,

\[
D^*(z, r) = \{ z \in \mathbb{C}; 0 < |w - z| < r \}
\]

Um disco furado é um disco que tem o seu centro removido.
Definição 2.6. Seja \(A \subset C \). Dizemos que um ponto \(z \in C \) é um “ponto de acumulação” de \(A \), se,
\[
D'(z, r) \cap A \neq \emptyset, \forall r > 0
\]
Um ponto \(z \in A \) que não é um ponto de acumulação de \(A \) é chamado “ponto isolado” de \(A \). Se todos os pontos de \(A \) são pontos isolados dizemos que \(A \) é um conjunto “discreto”.

Pela definição 2.6, se um conjunto \(X \subset C \) possui algum ponto de acumulação então, para todo \(\varepsilon > 0 \) existem pontos \(z, w \in X \) tais que \(|z - w| < \varepsilon \). Assim, temos o seguinte resultado:

Proposição 2.7. Qualquer subconjunto \(X \subset C \) infinito e limitado possui um ponto de acumulação.

Demonstração:

Suponha que a proposição seja falsa. Como \(X \) é limitado, existem \(a, b, \lambda \in \mathbb{R}, \lambda > 0 \) tal que
\[
X \subset [a, a + \lambda] \times [b, b + \lambda]
\]
Se \(X \) não tem ponto de acumulação então \(\exists \varepsilon > 0 \) tal que \(|x - y| > \varepsilon, \forall x, y \in X \). Consideremos o quadrado \(Q = [a, a + \lambda] \times [c, c + \lambda] \). Tomemos \(n \in \mathbb{N} \) tal que \(\frac{\lambda}{n} \sqrt{2} < \varepsilon \) e dividimos \(Q \) em quadrados de lado \(\frac{\lambda}{n} \).

Obtemos, assim, um total de \(n^2 \) quadrados. A diagonal de cada um destes quadrados é \(\frac{\lambda}{n} \sqrt{2} \), portanto, cada um deles contém no máximo um ponto de \(X \), logo \(X \) contém no máximo \(n^2 \) pontos, ou seja, \(X \) é finito. Contradição.

Definição 2.8. Seja \(A \subset C \) denotamos por \(\overline{A} \) o conjunto obtido unido-se \(A \) com todos os seus pontos de acumulação. \(\overline{A} \) é chamado “fecho” de \(A \).

Observe que um conjunto \(A \subset C \) é fechado se, e somente se, \(\overline{A} = A \).

Denotaremos o fecho do disco \(D(z, r) \) por
\[
\overline{D}(z_0, r) = \{ w \in C ; |w - z| \leq r \}
\]

Definição 2.9. Seja \(A \subset C \). Definimos
\[
\partial A = \overline{A} - \text{int}(A)
\]
O conjunto \(\partial A \) é chamado “bordo” ou “fronteira” de \(A \).

Note que se \(A \neq C \) e \(A \neq \emptyset \) então \(\partial A \neq \emptyset \) e todo disco centrado em algum ponto de \(\partial A \) interseca \(A \) e \(C - A \).

Definição 2.10. Seja \(A \subset C \). Se existem abertos \(X, Y \subset C \) disjuntos tais que:
- \(A \subset X \cup Y \);
- \(A \cap X \neq \emptyset \);
- \(A \cap Y \neq \emptyset \);
\(A \) é dito “desconexo”, caso contrário dizemos que \(A \) é “conexo”. Chamaremos um conjunto \(A \subset C \) de “região” ou “domínio” se \(A \) é aberto e conexo.

Um subconjunto \(B \subset A \) é dito “componente conexa” de \(A \) se \(B \) é aberto e fechado em \(A \).

Se \(A \) é aberto e conexo, dizemos que \(A \) é “simplesmente conexo” se \(A = C \) ou se todas as componentes conexas de \(C - A \) são ilimitadas. Isso significa que \(A \) não tem “buracos”.

Definição 2.11. Seja \(A \subset C \). Dizemos que \(A \) é “convexo” se, dados dois pontos quaisquer \(z, w \in A \), então o segmento de reta que liga \(z \) a \(w \) está contido em \(A \).
3.1 Sequências

Uma sequência de números complexos é uma função

\[\mathbb{N} \rightarrow \mathbb{C} \quad n \mapsto f(n) \quad (3.1) \]

Em geral, usamos \(z_n \) no lugar \(f(n) \) e representamos essa sequência apenas por \((z_n) \).

Uma sequência de números complexos é uma lista ordenada de números complexos.

Quando falamos em lista ordenada é para ficar claro quem é o primeiro, segundo, terceiro termo, etc.

Exemplo 3.1. \((1) \) é a sequência constante \((1, 1, 1, \ldots) \);

Exemplo 3.2. \(\left(\frac{1}{n} \right) \) é a sequência \(\left(1, \frac{1}{2}, \frac{1}{3}, \ldots \right) \);

Exemplo 3.3. \((i^n) \) é a sequência \((i, -1, -i, 1, i \ldots) \);

Exemplo 3.4. \(\left(\frac{i^n}{n} \right) \) é a sequência \(\left(i, -\frac{1}{2}, -\frac{i}{3}, \ldots \right) \);

Definição 3.5. Dizemos que uma sequência \((z_n) \) converge se existe \(L \in \mathbb{C} \) tal que, para todo \(\epsilon > 0 \), tomado arbitrariamente, conseguirmos encontrar \(N \in \mathbb{N} \) tal que, \(|z_n - L| < \epsilon \) sempre que \(n > N \). Ou seja, todos os termos \(z_n \) que aparecem na sequência depois de \(x_N \) estão contidos no disco \(D(L, \epsilon) \). Em notação matemática escrevemos:

\[\exists L \in \mathbb{C} \; \forall \epsilon > 0, \exists N \in \mathbb{N} : |z_n - L| < \epsilon, \forall n > N \]

Neste caso dizemos que a sequência \((z_n) \) converge para \(L \) e que \(L \) é o limite de \((z_n) \). Denotamos

\[\lim z_n = L \quad \text{ou} \quad z_n \rightarrow L \]
Exemplo 3.6. A sequência \(\left(\frac{i^n}{n^2} \right) \) converge para 0. De fato, tome \(\varepsilon > 0 \), arbitrariamente. Basta tomar \(N \in \mathbb{N} \) com \(N > \frac{1}{\sqrt{\varepsilon}} \), então, para todo \(n > N \), temos:

\[
\left| \frac{i^n}{n^2} - 0 \right| = \left| \frac{i^n}{n^2} \right| = \frac{1}{n^2} < \frac{1}{N^2} < \left(\frac{1}{\sqrt{\varepsilon}} \right)^2 = \frac{1}{\varepsilon} = \varepsilon
\]

ou seja, \(\left| \frac{i^n}{n^2} - 0 \right| < \varepsilon \).

Na Figura 3.1 aparecem os primeiros pontos desta sequência ligados por segmentos de reta (para fixarmos a ordem dos pontos, assim sabemos quem vem depois de quem). Na figura da esquerda vemos os pontos a partir do 1º ponto da sequência e na figura da direita vemos os pontos a partir do 9º ponto.

Figura 3.1: Pontos ordenados da sequência

Seja \((z_n) \) uma sequência. Se existir uma constante \(a \in \mathbb{C} \) e \(N \in \mathbb{N} \) tal que \(z_n = a \), \(\forall n > N \), então \((z_n) \) converge, e \(z_n \to a \). Esse tipo de sequência não é muito interessante. No texto que segue, só estudaremos sequências que não satisfazem essa propriedade, ou seja, só estudaremos sequências \((z_n) \), tais que o conjunto dos pontos da sequência \(\{z_n | n \in \mathbb{N}\} \) seja infinito.

Exemplo 3.7. A sequência do Exemplo 3.3 não converge.

Definição 3.8. Uma sequência \((z_n) \) é de Cauchy se para todo \(\varepsilon > 0 \), existir \(N \in \mathbb{N} \) tal que \(|z_m - z_n| < \varepsilon \), \(\forall m, n > N \).

Exemplo 3.9. A sequência do Exemplo 3.6 é de Cauchy. Veja que, se tormarmos \(\varepsilon > 0 \) e \(N > \sqrt{\frac{2}{\varepsilon}} \), então todos os pontos \(z_n \), com \(n > N \), estão contidos no disco \(D \left(0, \frac{\varepsilon}{2} \right) \), portanto, se \(m, n > N \) então \(|z_m - z_n| < \varepsilon \). Veja a Figura 3.1.
Proposição 3.10. O conjunto dos pontos de uma sequência de Cauchy é um conjunto limitado.

Demonstração:

Seja \((z_n)\) uma sequência de Cauchy.
Tomemos \(\varepsilon = 1\), então \(\exists N \in \mathbb{N}\) tal que \(z_n \in D(L, 1), \forall n > N\).
Tome \(A = \max(|z_1|, |z_2|, \ldots, |z_N|)\), então \(\{z_n | n \in \mathbb{N}\} \subset D(0, A + 1)\).

Proposição 3.11. Uma sequência \((z_n)\) converge se, e somente se, é de Cauchy.

Demonstração:

Primeiramente suponha que \((z_n)\) converge.
Seja \(L \in \mathbb{C}\) tal que \(z_n \to L\) e seja \(\varepsilon > 0\). Seja \(N \in \mathbb{N}\) tal que \(z_n \in D\left(L, \frac{\varepsilon}{2}\right), \forall n > N\). Logo, se \(n, m > N\) então \(|z_m - z_n| < \varepsilon\), ou seja, \((z_n)\) é uma sequência de Cauchy.

Agora suponha que \((z_n)\) é uma sequência de Cauchy.
Seja \(\varepsilon > 0\) então \(\exists N_0 \in \mathbb{N}\) tal que \(|z_m - z_n| < \frac{\varepsilon}{2}, \forall m, n > N_0\). Pela Proposição 3.10 o conjunto dos pontos desta sequência é limitado, portanto pela Proposição 2.7 este conjunto tem um ponto de acumulação, digamos \(L \in \mathbb{C}\). Logo \(\exists N > N_0\) tal que \(z_N \in D\left(L, \frac{\varepsilon}{2}\right)\). Então para todo \(n > N\) temos \(x_n \in D(L, \varepsilon)\). Assim, concluímos que \(z_n \to L\).

Agora usaremos uma recurso muito comum em Matemática. Vamos usar os resultados apresentados até agora para tirar conclusões sobre sequências mais complicadas. Os teoremas a seguir são de extrema importância:

Teorema 3.12. Sejam \((z_n)\) e \((w_n)\) sequências convergentes então a sequência \((z_n + w_n)\) converge e

\[
\lim(z_n + w_n) = \lim z_n + \lim w_n
\]

Demonstração:

Sejam \(L = \lim z_n\) e \(M = \lim w_n\). Fixemos \(\varepsilon > 0\), dado aleatoriamente.

Pela definição de limite de sequências, existem \(N_1, N_2 \in \mathbb{N}\) tais que \(|z_n - L| < \frac{\varepsilon}{2}\) se \(n > N_1\)
e \(|w_n - M| < \frac{\varepsilon}{2}\) se \(n > N_2\). Tome \(N = \max\{N_1, N_2\}\) então, se \(n > N\) temos:

\[
\begin{align*}
|(z_n + w_n) - (L + M)| &= |(z_n - L) + (w_n - M)| \\
&\leq |z_n - L| + |w_n - M| \\
&< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\
&= \varepsilon
\end{align*}
\]

Isso prova o teorema.
Teorema 3.13. Sejam \((z_n)\) e \((w_n)\) sequências convergentes então a sequência \((z_n \cdot w_n)\) converge e

\[
\lim (z_n \cdot w_n) = \lim z_n \cdot \lim w_n
\]

Demonstração:
Pela definição de sequência podemos encontrar \(N_1, N_2 \in \mathbb{N}\) tais que \(|z_n - L| < \frac{\varepsilon}{2(|M| + 1)}\) se \(n > N_1\) e \(|w_n - M| < \frac{\varepsilon}{2(|L| + 1)}\) se \(n > N_2\). Caso seja necessário, substituimos \(N_2\) por um valor maior, de forma que também tenhamos \(|w_n - M| < 1\) sempre que \(n > N_2\), isso significa que:

\[
|w_n| = |w_n - M + M| \leq |w_n - M| + |M| < |M| + 1
\]

Tome \(N = \max\{N_1, N_2\}\) então, se \(n > N\) temos:

\[
|z_n \cdot w_n - L \cdot M| = |z_n \cdot w_n - L \cdot w_n + L \cdot w_n - L \cdot M|
\]

\[
= |(z_n - L)w_n + L \cdot (w_n - M)|
\]

\[
\leq |(z_n - L) \cdot w_n| + |L \cdot (w_n - M)|
\]

\[
= |z_n - L| \cdot |w_n| + |L| \cdot |w_n - M|
\]

\[
< \frac{\varepsilon}{2(|M| + 1)} \cdot (|M| + 1) + |L| \cdot \frac{\varepsilon}{2(|L| + 1)}
\]

\[
< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
\]

Isso prova o teorema.

Corolário 3.14. Seja \((z_n)\) uma sequência convergente e seja \(\alpha \in \mathbb{C}\) então a sequência \((\alpha \cdot z_n)\) converge e

\[
\lim (\alpha \cdot z_n) = \alpha \cdot \lim z_n
\]

em particular, a sequência \((-z_n)\) converge e

\[
\lim (-z_n) = -\lim z_n
\]

Demonstração:
Basta considerar o produto de sequências \((w_n \cdot z_n)\), onde \((w_n)\) é a sequência constante \((\alpha)\). Agora é só usar o resultado do Teorema 3.13.

Corolário 3.15. Sejam \((z_n)\) e \((w_n)\) sequências convergentes então a sequência \((z_n - w_n)\) converge e

\[
\lim (z_n - w_n) = \lim z_n - \lim w_n
\]

Demonstração:
Basta substituir \(z_n - w_n\) por \(z_n + (-w_n)\) e usar o Corolário 3.14 e o Teorema 3.12.
Corolário 3.16. Seja \((z_n)\) uma sequência convergente e seja \(m \in \mathbb{N}\) então a sequência \((z_n^m)\) converge e
\[
\lim z_n^m = (\lim z_n)^m
\]

Demonstração:
Basta aplicar o resultado do Teorema 3.13 usando o Princípio da Indução Matemática.
Pelo Teorema 3.13 \((z_n^2)\) converge e
\[
\lim z_n^2 = \lim z_n \cdot z_n = \lim z_n \cdot \lim z_n = (\lim z_n)^2
\]
Suponha que para algum \(k \in \mathbb{N}\) a sequência \((z_n^k)\) converge e \(\lim z_n^k = (\lim z_n)^k\).
Então, pelo Teorema 3.13 a sequência \((z_n^{k+1})\) converge pois \(z_n^{k+1} = z_n^k \cdot z_n\) e temos \(\lim z_n^{k+1} = \lim (z_n^k \cdot z_n) = (\lim z_n)^k \cdot \lim z_n = (\lim z_n)^{k+1}\)
Isso conclui a prova.

Corolário 3.17. Seja \(p(z) = a_n z^n + \cdots + a_2 z^2 + a_1 z + a_0\) uma função polinomial. Se \((z_n)\) é uma sequência convergente e então a sequência \((p(z_n))\) converge e
\[
\lim p(z_n) = p(\lim z_n).
\]

Demonstração:
Basta aplica o Corolário 3.16, juntamente com o Corolário 3.14 e o Teorema 3.12.

Teorema 3.18. Seja \((z_n)\) uma sequência convergente, tal que \(\lim z_n \neq 0\) então a sequência \(\left(\frac{1}{z_n}\right)\) converge e
\[
\lim \left(\frac{1}{z_n}\right) = \frac{1}{\lim z_n}
\]

Demonstração:
Pela definição de sequência podemos encontrar \(N \in \mathbb{N}\) tais que \(|z_n - L| < \frac{|L|^2}{2}\) se \(n > N\).
Caso seja necessário, substituimos \(N\) por um valor maior, de forma que também tenhamos \(|z_n - L| < \frac{|L|}{2}\) sempre que \(n > N\), isso significa que:
\[
|L| = |L - z_n + z_n| \leq |L - z_n| + |z_n| < \frac{|L|}{2} + |z_n|
\]
Portanto
\[
|z_n| > \frac{|L|}{2}
\]
E temos a desigualdade

\[\frac{1}{|z_n|} < \frac{2}{|L|} \]

Se \(n > N \) teremos:

\[
\left| \frac{1}{z_n} - \frac{1}{L} \right| = \left| \frac{L - z_n}{L \cdot z_n} \right| = \left| L - z_n \right| \cdot \frac{1}{|L|} \cdot \frac{1}{|z_n|} < \frac{|L|^2 \varepsilon}{2} \cdot \frac{1}{|L|} \cdot \frac{2}{|L|} = \varepsilon
\]

Isso prova o teorema.

\[\square \]

Corolário 3.19. Sejam \((z_n)\) e \((w_n)\) sequências convergentes, onde \(\lim w_n = 0 \) então a sequência \((\frac{z_n}{w_n})\) converge e

\[
\lim \frac{z_n}{w_n} = \frac{\lim z_n}{\lim w_n}
\]

Definição 3.20. Seja \((z_n)\) uma sequência. Dizemos que o limite desta sequência é o infinito se, para todo \(R > 0 \), existir \(N \in \mathbb{N} \) tal que \(|z_n| > R \) sempre que \(n > N \). Ou seja, todos os números que aparecem na sequência depois de \(z_N \) estão fora do disco \(D(0, R) \). Denotamos isto por:

\[
\lim z_n = \infty
\]

Teorema 3.21. Seja \((z_n)\) uma sequência. Então

\[
\lim z_n = \infty \text{ se, e somente se, } \lim \frac{1}{z_n} = 0
\]

Demonstração:

Seja \(R > 0 \). Se \(\lim \frac{1}{z_n} = 0 \) então existe \(N \in \mathbb{N} \) tal que, se \(n > N \) temos \(\left| \frac{1}{z_n} \right| < \frac{1}{R} \), logo, \(|z_n| > R \).

Reciprocamente, se \(\lim z_n = \infty \) então, dado \(\varepsilon > 0 \) existe \(N \in \mathbb{N} \) tal que, se \(n > N \) temos \(|z_n| > \frac{1}{\varepsilon} \), logo

\[
\left| \frac{1}{z_n} \right| < \varepsilon.
\]

\[\square \]

Exemplo 3.22. Vamos mostrar que a sequência \((2in + 3 + 5i)\) tende ao infinito.

Observe que a sequência \(\left(\frac{1}{2in + 3 + 5i} \right) \) converge para zero, para ver isto basta usar os resultados mostrados neste capítulo:

\[
\lim \frac{1}{2in + 3 + 5i} = \lim \frac{1}{n \cdot \frac{1}{2i + \frac{1}{n} \cdot (3 + 5i)}} = 0 \cdot \frac{1}{2i + 0 \cdot (3 + 5i)} = 0
\]

Isso mostra que \(\lim (2in + 3 + 5i) = \infty \)
3.2 Séries

Considere uma sequência \((z_n)\) e a sequência \((s_n)\) obtida da seguinte forma:

\[s_n = z_1 + z_2 + \cdots + z_n \]

ou seja

\[s_n = \sum_{i=1}^{n} z_i \]

Uma sequência como \((s_n)\) é chamada “série”. Se a sequência \((s_n)\) converge dizemos que a série converge, caso contrário, dizemos que a série diverge.

Em geral denotamos a série \((s_n)\) por

\[\sum_{n=1}^{\infty} z_n \]

É muito comum uma série aparecer como \(\sum_{n=0}^{\infty} a^n\), onde os termos começam a ser somados a partir do índice zero.

Exemplo 3.23. Seja \(\alpha \in \mathbb{C}^*\), com \(|\alpha| < 1\). A série \(\sum_{n=0}^{\infty} a^n\) converge. De fato, considere a sequência \((s_n)\) das somas parciais.

\[s_n = 1 + \alpha + \alpha^2 + \cdots + \alpha^n = \frac{1 - \alpha^{n+1}}{1 - \alpha} \]

Como \(\lim_{n \to \infty} \alpha^{n+1} = 0\), então \(\lim_{n \to \infty} s_n = \frac{1}{1 - \alpha}\). Portanto

\[\sum_{n=0}^{\infty} a^n = \frac{1}{1 - \alpha} \]

Essa série é conhecida como “Série Geométrica”.

Uma série também pode ser vista como uma soma de vetores no plano, basta associar o número complexo \(z = x + iy\) ao vetor \((x, y)\), assim, para uma série obtemos a figura de uma curva poligonal infinita, que representa a soma consecutiva dos termos da série. Por exemplo, considere a série geométrica \(\sum_{n=0}^{\infty} \left(\frac{1}{2} + i\frac{1}{3}\right)^n\).

Baseado exemplo anterior temos:

\[\sum_{n=0}^{\infty} \left(\frac{1}{2} + i\frac{1}{3}\right)^n = \frac{1}{1 - \left(\frac{1}{2} + i\frac{1}{3}\right)} = \frac{6}{6 - (3 + 2i)} = \frac{6}{3 - 2i} = \frac{18 + 12i}{13} \]

Veja o esboço da poligonal que representa essa série na Figura 3.2. Do lado esquerdo aparece uma ampliação próximo do local da convergência.

Note a semelhança com a figura que usamos para ilustrar sequências (veja a Figura 3.1 na seção anterior). Isso é muito natural, pois sempre podemos associar uma sequência a uma série. E também podemos associar uma série a uma sequência: Se \((z_n)\) é uma sequência convergente associamos a ela a série

\[\sum_{n=1}^{\infty} w_n , \text{onde } \left\{ \begin{array}{c} w_1 = z_1 \\
 w_n = z_n - z_{n-1} , \ n \geq 2 \end{array} \right. \]
Figura 3.2: Poligonal que representa a série geométrica para $a = \frac{1}{2} + i \frac{3}{2}$.

Testes de convergência

Antes de tentar calcular o limite de uma série, primeiro é necessário saber se ela converge. Para isso existem vários testes de convergência. Nesta subseção apresentaremos os testes de convergência mais populares.

Definição 3.24. Uma série complexa $\sum_{n=0}^{\infty} z_n$ converge absolutamente se a série de números reais positivos $\sum_{n=0}^{\infty} |z_n|$ converge.

Teorema 3.25. Se $\sum_{n=1}^{\infty} z_n$ converge absolutamente. Então:

a) $\sum_{n=1}^{\infty} z_n$ converge;

b) Se $\{n_1, n_2, n_3, \ldots\}$ é uma reordenação de $\mathbb{N} = \{1, 2, 3, \ldots\}$ então $\sum_{j=1}^{\infty} z_{n_j} = \sum_{n=1}^{\infty} z_n$.

Demonstração:

Seja a sequência (s_n) onde

$$s_n = \sum_{j=1}^{n} z_j$$

Seja $\varepsilon > 0$. Logo, por hipótese, $\exists N \in \mathbb{N}$ tal que $\sum_{n=N+1}^{\infty} |z_n| < \varepsilon$, pois a série converge absolutamente.

Logo, se $n > m > N$ temos:

$$|s_n - s_m| = \left| \sum_{i=m+1}^{n} z_i \right| \leq \sum_{i=m+1}^{n} |z_i| \leq \sum_{n=N+1}^{\infty} |z_n| < \varepsilon$$

Logo (s_n) é de Cauchy, portanto converge. Isso prova a).
Seja \(s = \sum_{n=1}^{\infty} z_n \).

Seja \(\{n_1, n_2, n_3, \ldots\} \) é uma reordenação de \(N = \{1, 2, 3, \ldots\} \). Seja \(M \geq N \) o menor inteiro tal que \(\{1, 2, \ldots, N\} \subset \{n_1, n_2, \ldots, n_M\} \). Para todo \(l > M \) temos:

\[
|s - \sum_{j=1}^{l} z_{n_j}| = \left| \sum_{n=1}^{\infty} z_n - \sum_{j=1}^{l} z_{n_j} \right| = \left| \sum_{n \notin \{n_1, n_2, \ldots, n_l\}} z_n \right| \leq \sum_{n \notin \{n_1, n_2, \ldots, n_l\}} |z_n| \leq \sum_{n=N+1}^{\infty} |z_n| < \varepsilon
\]

Isso mostra que \(\sum_{j=1}^{\infty} z_{n_j} = \sum_{n=1}^{\infty} z_n \). Isso prova b). \(\square \)

Antes de prosseguirmos, precisamos das seguintes definições:

Definição 3.26. Seja \((x_n) \) uma sequência de números reais positivos. O número real \(\alpha \) é chamado “limite inferior” de \((x_n) \) se para todo \(\varepsilon > 0 \), escolhido arbitrariamente, existir \(N \in \mathbb{N} \) tal que \(|x_N - \alpha| < \varepsilon \) e para todo \(n > N \) tivermos \(x_n > \alpha - \varepsilon \). Neste caso denotamos

\[
\lim \inf x_n = \alpha
\]

Se não existe \(\alpha \), dizemos que \(\lim x_n = +\infty \).

Definição 3.27. Seja \((x_n) \) uma sequência de números reais positivos. O número real \(\beta \) é chamado “limite superior” de \((x_n) \) se para todo \(\varepsilon > 0 \), escolhido arbitrariamente, existir \(N \in \mathbb{N} \) tal que \(|x_N - \beta| < \varepsilon \) e para todo \(n > N \) tivermos \(x_n < \beta + \varepsilon \). Neste caso denotamos

\[
\lim \sup x_n = \beta
\]

Se não existe \(\beta \) dizemos, que \(\lim \sup x_n = +\infty \).

Dizer que \(\lim \sup x_n = \beta \) significa dizer que, para todo \(\varepsilon > 0 \) existe \(N \in \mathbb{N} \) tal que todos os termos da sequência que aparecem depois de \(x_N \) estão contidos no intervalo \((0, \beta + \varepsilon) \), e que isso não vale para nenhum outro número menor que \(\beta \).

Convém ressaltar que se a sequência \((x_n) \) converge então \(\lim \sup x_n \) e \(\lim \inf x_n \) coincidem com \(\lim x_n \).

Inspirados na Série Geométrica temos dois testes convergência bem populares: o teste da razão e o teste da raiz.
Teste da razão

Seja \(\sum_{n=0}^{\infty} z_n \) uma série. Podemos supor, sem perda de generalidade que \(z_n \neq 0, \forall n \in \mathbb{N} \). Seja

\[
R = \lim \sup \left| \frac{z_{n+1}}{z_n} \right|
\]

Se \(R < 1 \) a série converge absolutamente; Se \(R = 1 \) nada podemos dizer sobre sua convergência; Se \(R > 1 \) a série diverge.

Dizer que \(\lim \sup \left| \frac{z_{n+1}}{z_n} \right| < 1 \) significa dizer que existe \(N \in \mathbb{N} \) tal que todos os termos da sequência \(\left(\frac{z_{n+1}}{z_n} \right) \), com \(n > N \), estão contidos no disco unitário \(\mathbb{D}(0, 1) \).

Exemplo 3.28. Seja \(\alpha \in \mathbb{C} \). Considere a série \(\sum_{n=0}^{\infty} \frac{\alpha^n}{n!} \).

\[
\lim \sup \left| \frac{\alpha^{n+1}}{(n+1)!} \right| = \lim \sup \left| \frac{\alpha^n}{n!} \right| = \lim \sup \left| \frac{\alpha}{n+1} \right| = 0
\]

Portanto a série converge.

Na Figura 3.3 damos o esboço da poligonal desta série para o caso em que \(\alpha = 4 + 3i \). Do lado direito temos uma ampliação.

![Figura 3.3: Poligonal da série do Exemplo 3.28 para \(\alpha = 4 + 3i \).](image)
3.2 Séries

Teste da raiz

Seja \(\sum_{n=0}^{\infty} z_n \) uma série e seja

\[
R = \limsup \sqrt[n]{|z_n|}
\]

Se \(R < 1 \) a série converge absolutamente;
Se \(R = 1 \) nada podemos dizer sobre sua convergência;
Se \(R > 1 \) a série diverge.

Exemplo 3.29. Seja \(\alpha \in \mathbb{C} \). Considere a série \(\sum_{n=0}^{\infty} \frac{\alpha^n}{n^n} \)

\[
\limsup \sqrt[n]{\left| \frac{\alpha^n}{n^n} \right|} = \limsup \sqrt[n]{\left| \frac{|\alpha|^n}{n^n} \right|} = \limsup \left| \frac{|\alpha|}{n} \right| = 0
\]

Portanto a série converge. Veja na Figura 3.4 um esboço da poligonal associada à esta série para \(\alpha = 4 + 3i \).

![Figura 3.4: Poligonal da série do Exemplo 3.29 para \(\alpha = 4 + 3i \).](image)

Um outro teste bem conhecido é o teste da integral.

Teste da integral

Seja \(f : [0, +\infty) \to \mathbb{R}^+ \) uma função contínua não-crescente tal que

\[
\int_{1}^{+\infty} f(x)\,dx < +\infty
\]

Seja \(\sum_{n=0}^{\infty} z_n \) uma série. Se \(\exists N \in \mathbb{N} \) tal que \(|z_n| \leq f(n), \forall n > N \), então esta série converge absolutamente. Se \(\int_{1}^{+\infty} f(x)\,dx = +\infty \) e existir \(N \in \mathbb{N} \) tal que \(|z_n| \geq f(n), \forall n > N \), então a série diverge.
Exemplo 3.30. Seja \(\alpha \in \mathbb{C} \), com \(\text{Re}(\alpha) > 1 \). Considere a série \(\sum_{n=1}^{\infty} n^{-\alpha} \). Sejam \(a, b \in \mathbb{R} \), tais que \(\alpha = a + bi \).

Observe que:
\[
|n^{-a}| = |n^{-a-bi}| = |n^{-a} \cdot n^{-bi}| = n^{-a} \cdot |n^{-bi}| = n^{-a} \cdot 1 = n^{-a}
\]

O motivo pelo qual \(|n^{-bi}| = 1 \) será explicado na seção 6.4. Como \(a > 1 \) temos que:
\[
\int_{1}^{\infty} x^{-a} \, dx = \lim_{R \to +\infty} \int_{1}^{R} x^{-a} \, dx = \lim_{R \to +\infty} \frac{x^{1-a}}{1-a} \bigg|_{1}^{R}
\]
\[
= \lim_{R \to +\infty} \left(\frac{R^{1-a}}{1-a} - \frac{1}{1-a} \right) = \frac{1}{a-1}
\]

Portanto a série converge absolutamente.

Observe que se \(\text{Re}(\alpha) \leq 1 \) a série diverge. Na Figura 3.30 exibimos a poligonal associada a esta série para \(\alpha = \frac{3}{2} + 41i \). Nela aparecem as primeiras 1000 somas parciais. Para melhorar o visual omitemos os pontos que marcam os vértices da poligonal.

![Figura 3.5: Poligonal da série do Exemplo 3.30 para \(\alpha = \frac{3}{2} + 41i \).](image)

Às vezes podemos concluir se uma série converge ou não, comparando-a com uma série que converge ou não.

Teste da comparação

Seja \(\sum_{n=0}^{\infty} z_n \) uma série que converge absolutamente e seja \(\sum_{n=0}^{\infty} w_n \) uma outra série. Se \(\exists N \in \mathbb{N} \) tal que \(|w_n| \leq |z_n|, \forall n > N \). Então \(\sum_{n=0}^{\infty} w_n \) converge absolutamente.

Na verdade, para garantirmos a convergência absoluta, basta que
\[
\lim \sup_{n \to \infty} \left| \frac{w_n}{z_n} \right| < +\infty
\]

Se \(\sum_{n=0}^{\infty} z_n \) diverge e existe \(N \in \mathbb{N} \) tal que \(|w_n| \geq |z_n|, \forall n > N \), então \(\sum_{n=0}^{\infty} w_n \) diverge.
Exemplo 3.31. Neste exemplo vamos ilustrar a deficiência das séries que não convergem absolutamente.

Considere a série

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

Esta série é convergente. De fato, dado $\epsilon > 0$, basta tomar $N > \frac{1}{\epsilon}$ então, para todo $m, n > N$, temos:

$$\left| \sum_{k=n+1}^{m} \frac{(-1)^k}{k} \right| = \left| \frac{1}{n+1} - \frac{1}{n+2} + \frac{1}{n+3} - \cdots + \frac{(-1)^{m-n-1}}{m} \right|$$

Vejamos que

$$\frac{1}{n+1} - \frac{1}{n+2} + \frac{1}{n+3} - \cdots + \frac{(-1)^{m-n-1}}{m} = \left(\frac{1}{n+1} - \frac{1}{n+2} \right) + \left(\frac{1}{n+3} - \frac{1}{n+4} \right) + \cdots + \frac{(-1)^{m-n-1}}{m} > 0$$

E também

$$\frac{1}{n+1} - \frac{1}{n+2} + \frac{1}{n+3} - \cdots + \frac{(-1)^{m-n-1}}{m} = \frac{1}{n+1} - \left(\frac{1}{n+2} - \frac{1}{n+3} \right) - \cdots - \frac{(-1)^{m-n-1}}{n+1} < \frac{1}{n+1}$$

Logo

$$\left| \sum_{k=n+1}^{m} \frac{(-1)^k}{k} \right| < \frac{1}{n+1} < \frac{1}{N} < \epsilon$$

Isso mostra que a sequência (s_n) das somas parciais da série é de Cauchy, logo, converge. Mas, pelo teste da integral, vemos que esta série não converge absolutamente.

Agora considere um número real A. Podemos encontrar uma reordenação $\{n_1, n_2, n_3, \ldots\}$ de $N = \{1, 2, 3, \ldots\}$ tal que, se (s_j) é a sequência das somas parciais da série

$$\sum_{j=1}^{\infty} \frac{(-1)^{n_j}}{n_j}$$

então $\lim s_j = A$

Vamos construir uma reordenação de N que satisfaça essa propriedade.

Primeiro observe que $\sum_{n=1}^{\infty} \frac{1}{2n} = +\infty$ e $\sum_{n=1}^{\infty} \frac{1}{2n-1} = +\infty$ (teste da integral).

Começamos a reordenação com os números ímpares ordenadamente, até que ocorra $s_j < A$ pela primeira vez. Se $A > 0$ passamos para o próximo passo.

Em seguida colocamos os números ímpares ordenadamente, até que ocorra $s_j > A$ pela primeira vez.

Repetimos estes passos sucessivamente com os números ímpares e pares restantes. E pronto, teremos $\lim s_j = A$.

Ou seja, podemos reordenar \mathbb{N} e fazer a série convergir para qualquer número real que queiramos.

Também podemos reordenar \mathbb{N} de forma que a série nem mesmo converja.
3.3 Produtórios

Um produtório é uma sequência \((p_n)\) obtida apertir de uma sequência \((z_n)\), da seguinte forma:

\[p_n = z_1 \cdot z_2 \cdots \cdot z_n \]

ou seja

\[p_n = \prod_{i=1}^{n} z_i \]

Se a sequência \((p_n)\) converge dizemos que o produtório converge, caso contrário, dizemos que o produtório diverge.

Em geral denotamos o produtório \((p_n)\) por

\[\prod_{n=1}^{\infty} z_n \]

Usando o teste da razão vemos que, se \((p_n)\) converge então,

\[\limsup \left| \frac{p_{n+1}}{p_n} \right| = \limsup |z_{n+1}| \leq 1 \]

Suponha que \(\limsup |z_n| = \beta < 1\). Seja \(\alpha \in \mathbb{R}\), tal que \(0 < \beta < \alpha < 1\). Então \(\exists N \in \mathbb{N}\) tal que \(|z_n| < \alpha, \forall n > N\). Então

\[\left| \prod_{n=N+1}^{\infty} z_n \right| = \prod_{n=N+1}^{\infty} |z_n| \leq \prod_{n=N+1}^{\infty} \alpha = \lim \alpha^n = 0 \Rightarrow \prod_{n=N+1}^{\infty} z_n = 0 \]

Logo

\[\prod_{n=1}^{\infty} z_n = p_N \cdot \prod_{n=N+1}^{\infty} z_n = 0 \]

Portanto, se algum \(z_n = 0\) ou se \(\limsup |z_n| < 1\) então \(\prod_{n=1}^{\infty} z_n = 0\).

Se o produtório converge para algum \(p \in \mathbb{C}^*\) então

\[\lim z_{n+1} = \lim \frac{p_{n+1}}{p_n} = \frac{p}{p} = 1 \]

ou seja, \(\lim z_n = 1\). Por esse motivo, estudaremos apenas produtórios da forma

\[\prod_{n=1}^{\infty} (1 + u_n) \]

com \(\lim u_n = 0\).

Lema 3.32. Seja \((z_n)\) uma sequência. Para todo \(N \in \mathbb{N}\) temos:

\[\left| \prod_{n=1}^{N} (1 + z_n) - 1 \right| \leq \prod_{n=1}^{N} (1 + |z_n|) - 1 \]

Demonstração:

Provaremos por indução sobre \(N\).
Para \(N = 1\) o resultado é facilmente verificado.
Suponha que o resultado seja válido para \(N = k \geq 1 \) então:

\[
\prod_{n=1}^{k+1} (1 + z_n) - 1 = \left| \prod_{n=1}^{k} (1 + z_n) - 1 \right|
\]

\[
\leq \left| z_{k+1} \prod_{n=1}^{k} (1 + z_n) + \prod_{n=1}^{k} (1 + z_n) - 1 \right|
\]

\[
\leq \left| z_{k+1} \prod_{n=1}^{k} (1 + |z_n|) + \prod_{n=1}^{k} (1 + |z_n|) - 1 \right|
\]

\[
= (1 + |z_{k+1}|) \prod_{n=1}^{k} (1 + |z_n|) - 1
\]

Portanto vale para \(N = k + 1 \).

\[\square \]

Lema 3.33. Para a função \(x \mapsto e^x \) valem os seguintes fatos:

- Se \(x \geq 0 \) então \(1 + x \leq e^x \);
- Se \(0 \leq x \leq 1 \) então \(e^x - 1 \leq 2x \);
- Se \(0 \leq x \leq \frac{1}{2} \) então \(1 - x \geq e^{-2x} \);

Demonstração:

O primeiro fato, obtém-se da igualdade

\[
e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots
\]

O segundo fato, é consequência da desigualdade abaixo:

\[
e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots
\]

\[
\leq 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots
\]

\[
= 1 + x \left(1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \cdots \right)
\]

\[
= 1 + x(e - 1)
\]

\[
\leq 1 + 2x
\]

Para o terceiro fato, basta ver que se \(0 \leq x \leq 1 \) então

\[
e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \frac{x^5}{5!} + \cdots
\]

\[
= 1 - x + \frac{x^2}{2!} \left(1 - \frac{x}{3!} \right) - \frac{x^5}{5!} \left(1 - \frac{x}{6} \right) - \cdots
\]

\[
\leq 1 - x + \frac{x^2}{2!}
\]

\[
\leq 1 - x + \frac{x}{2}
\]

\[
= 1 - \frac{x}{2}
\]

\[\square \]
Teorema 3.34. Se \(\sum_{n=1}^{\infty} z_n \) converge absolutamente. Então:

a) \(\prod_{n=1}^{\infty} (1 + z_n) \) converge;

b) Se \(\{n_1,n_2,n_3,\ldots\} \) é uma reordenação de \(\mathbb{N} = \{1,2,3,\ldots\} \) então \(\prod_{j=1}^{\infty} (1 + z_{n_j}) = \prod_{n=1}^{\infty} (1 + z_n) \);

c) \(\prod_{n=1}^{\infty} (1 + z_n) = 0 \) se, e somente se, \(z_n = -1 \) para algum \(n \in \mathbb{N} \).

Demonstração:

Seja a sequência \((p_n) \) onde

\[
p_n = \prod_{i=1}^{n} (1 + z_i)
\]

Suponha que \(z_n \neq -1, \forall n \in \mathbb{N} \). Neste caso \(p_n \neq 0, \forall n \in \mathbb{N} \).

Nesta demonstração usaremos as desigualdades mostradas no Lema 3.33.

Primeiro verifiquemos que a sequência \((p_n) \) é limitada.

Seja \(K \in \mathbb{N} \) tal que \(\sum_{i=1}^{m} |z_i| < 1, \forall m > n > K \). Logo, para \(n > K \), temos

\[
\left| \frac{p_n}{p_K} \right| = \left| \prod_{k=1}^{n} (1 + z_k) \right| \leq \left| \prod_{k=1}^{n} (1 + |z_n|) \right| \leq e^{\Sigma_{k=1}^{n} |z_n|} < e
\]

Seja \(C = \max\{ |p_1|, |p_2|, \ldots, |p_{K-1}|, e \cdot |p_K| \} \) então \(|p_n| \leq C, \forall n \in \mathbb{N} \). Isso mostra que a sequência \((p_n) \) é limitada.

Agora mostremos que \((p_n) \) converge.

Fixemos \(\epsilon \in (0,1) \). Seja \(N \in \mathbb{N} \), com \(N \geq K \), tal que

\[
\sum_{i=n+1}^{m} |z_i| < \epsilon, \forall m > n > N
\]

Logo, se \(m > n > N \)

\[
|p_m - p_n| = |p_n| \left| \frac{p_m}{p_n} - 1 \right| = |p_n| \left| \prod_{i=n+1}^{m} (1 + z_i) - 1 \right| \leq C \left(\prod_{i=n+1}^{m} (1 + |z_i|) - 1 \right) \leq C \left(\prod_{i=n+1}^{m} e^{|z_i|} - 1 \right) = C(e^{\sum_{i=n+1}^{m} |z_i|} - 1) \leq C(e^\epsilon - 1) \leq 2C\epsilon
\]
Logo \((p_n)\) é de Cauchy, portanto converge. Isso prova a).

Seja \(p = \prod_{n=1}^{\infty} (1 + z_n)\).

Seja \(\{n_1, n_2, n_3, \ldots\}\) é uma reordenação de \(N = \{1, 2, 3, \ldots\}\). Seja \(M \geq N\) o menor inteiro tal que \(\{1, 2, \ldots, N\} \subset \{n_1, n_2, \ldots, n_M\}\). Para todo \(l > M\) temos:

\[
\left| p - \prod_{j=1}^{l} (1 + z_{n_j}) \right| = \left| \prod_{n=1}^{\infty} (1 + z_n) - \prod_{j=1}^{l} (1 + z_{n_j}) \right|
\]

\[
= |p_N| \left| \prod_{j=M+1}^{l} (1 + z_{n_j}) \right| \left| \prod_{n \not\in \{n_1, n_2, \ldots, n_l\}} (1 + z_n) - 1 \right|
\]

\[
\leq C \cdot \prod_{j=M+1}^{l} (1 + |z_{n_j}|) \cdot \left(\prod_{n \not\in \{n_1, n_2, \ldots, n_l\}} (1 + |z_n|) - 1 \right)
\]

\[
\leq C \cdot \prod_{j=M+1}^{l} (1 + |z_{n_j}|) \cdot \left(\prod_{n=N+1}^{\infty} (1 + |z_n|) - 1 \right)
\]

\[
\leq C \cdot e^{\sum_{l=M+1}^{\infty} |z_{n_j}|} \cdot \left(e^{\sum_{n=N+1}^{\infty} |z_n|} - 1 \right)
\]

\[
\leq C \cdot e^k \cdot (e^k - 1)
\]

\[
= 2e^k e^k - 1
\]

Isso mostra que \(\prod_{j=1}^{\infty} (1 + z_{n_j}) = \prod_{n=1}^{\infty} (1 + z_n)\). Isso prova b).

Por último, seja \(\rho = \sum_{n=1}^{\infty} |z_n|\). Seja \(L \geq K\) tal que, para todo \(m > L\) temos \(|z_m| \leq \frac{1}{2}\), logo:

\[
\left| \prod_{n=L+1}^{m} (1 + z_n) \right| = \prod_{n=L+1}^{m} |1 + z_n|
\]

\[
\geq \prod_{n=L+1}^{m} (1 - |z_n|)\]

\[
\geq \prod_{n=L+1}^{m} e^{-2|z_n|}
\]

\[
= e^{-2\sum_{n=L+1}^{m} |z_n|}
\]

\[
\geq e^{-2\rho}
\]

Portanto \(\prod_{n=1}^{\infty} (1 + z_n) = \prod_{n=L+1}^{\infty} (1 + z_n) \geq |p_L| e^{-2\rho} > 0\). Isso prova c).

Para ilustrar a necessidade da convergência da série \(\sum_{n=1}^{\infty} |z_n|\) para que o produtório \(\prod_{n=1}^{\infty} (1 + z_n)\) seja convergente e seja não-nulo, considere a sequência \(\left(\frac{1}{n}\right)\). Observe que \(\frac{1}{n} \to 0\), mas \(\sum_{n=2}^{\infty} \frac{1}{n} = +\infty\).

Considere o produtório \(\prod_{n=2}^{\infty} (1 - \frac{1}{n})\).

\[
p_n = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \ldots \cdot \frac{n-2}{n-1} \cdot \frac{n-1}{n} = \frac{1}{n}
\]
Logo
\[\prod_{n=2}^{\infty} \left(1 - \frac{1}{n} \right) = \prod_{n=2}^{\infty} \frac{n-1}{n} = 0 \]

pois \(p_n \to 0 \).

Da mesma forma, \(\prod_{n=1}^{\infty} \left(1 + \frac{1}{n} \right) = +\infty \). Verifique.

Exemplo 3.35. Seja \(\alpha \in \mathbb{C} \), com \(|\alpha| < 1 \). Então o produtório
\[\prod_{n=1}^{\infty} (1 + \alpha^n) \]
converge e é não-nulo pois \(\sum_{n=1}^{\infty} \alpha^n \) converge absolutamente (série geométrica) e, \(\forall n \in \mathbb{N}, |\alpha^n| = |\alpha|^n < 1 \), logo \(\alpha^n \neq -1 \). Veja o Exemplo 3.23.

Exemplo 3.36. Seja \(\alpha \in \mathbb{C} \), com \(\text{Re}(\alpha) > 1 \). Seja \((q_n) \) a sequência dos números primos, ou seja, \((2, 3, 5, 7, 11, \ldots) \). O produtório
\[\prod_{n=1}^{\infty} (1 - q_n^{-\alpha})^{-1} \]
converge e é não-nulo.

De fato, \(\prod_{n=1}^{\infty} (1 - q_n^{-\alpha})^{-1} \) converge se, e somente se, \(\prod_{n=1}^{\infty} (1 - q_n^{-\alpha}) \) converge. Mas, este último converge pois a série \(\sum_{n=1}^{\infty} q_n^{-\alpha} \) converge absolutamente. Observe que
\[\sum_{n=1}^{\infty} |q_n^{-\alpha}| < \sum_{n=1}^{\infty} |n^{-\alpha}| < +\infty \]

Veja o Exemplo 3.30. Veja também que, \(\forall n \in \mathbb{N}, |q_n^{-\alpha}| < 1 \), logo \(q_n^{-\alpha} \neq 1 \).

Como \(|q_n^{-\alpha}| \leq 1 \), então \((1 - q_n^{-\alpha})^{-1} = 1 + q_n^{-\alpha} + q_n^{-2\alpha} + q_n^{-3\alpha} + \cdots \) (série geométrica), portanto,
\[\prod_{n=1}^{\infty} (1 - q_n^{-\alpha})^{-1} = \prod_{n=1}^{\infty} (1 + q_n^{-\alpha} + q_n^{-2\alpha} + q_n^{-3\alpha} + \cdots) \]

Considere os conjuntos
\[A_n = \{ q_1^{k_1} q_2^{k_2} \cdots q_n^{k_n} | k_1, k_2, \ldots, k_n \in \mathbb{Z}_+ \} \subset \mathbb{N} \]

Então:
\[p_1 = 1 + 2^{-\alpha} + 2^{-2\alpha} + 2^{-3\alpha} + \cdots = \sum_{m \in A_1} m^{-\alpha} \]
\[p_2 = (1 + 2^{-\alpha} + 2^{-2\alpha} + \cdots)(1 + 3^{-\alpha} + \cdots) = \sum_{m \in A_2} m^{-\alpha} \]
\[p_3 = \prod_{j=1}^{3} (1 + q_j^{-\alpha} + q_j^{-2\alpha} + q_j^{-3\alpha} + \cdots) = \sum_{m \in A_3} m^{-\alpha} \]
\[\vdots \]
\[p_n = \prod_{j=1}^{n} (1 - q_j^{-\alpha})^{-1} = \sum_{m \in A_n} m^{-\alpha} \]

Note que \(A_1 \subset A_2 \subset A_3 \subset \cdots \) e que \(\bigcup_{n=1}^{\infty} A_n = \mathbb{N} \), logo:
\[\prod_{n=1}^{\infty} (1 - q_n^{-\alpha})^{-1} = \sum_{n=1}^{\infty} n^{-\alpha} \]
4.1 Limites

Definição 4.1. *A partir deste ponto chamaremos de “região” um subconjunto aberto e conexo de \(\mathbb{C} \).*

Consideremos uma função \(f : A \to \mathbb{C} \), onde \(A \subseteq \mathbb{C} \) é um região.

Seja \(L \in \mathbb{C} \) e \(z_0 \in \mathbb{C} \) um ponto de acumulação de \(A \). Dizemos que \(L \) é o limite de \(f(z) \) quando \(z \) tende a \(z_0 \) se, para todo \(\varepsilon > 0 \) existe \(\delta > 0 \) tal que \(|f(z) - L| < \varepsilon \) sempre que \(z \in A \) e \(|z - z_0| < \delta \). Em termos matemáticos:

\[
\forall \varepsilon > 0, \exists \delta > 0; z \in A \text{ e } |z - z_0| < \delta \Rightarrow |f(z) - L| < \varepsilon
\]

Outra forma de definir é a seguinte:

Para todo \(\varepsilon > 0 \) existe \(\delta > 0 \) tal que, se \(z \in A \cap \mathbb{D}^*(z_0, \delta) \) então \(f(z) \in \mathbb{D}(L, \varepsilon) \), ou seja, a imagem da parte do disco furado \(\mathbb{D}^*(z_0, \delta) \) que está contida em \(A \) pela função \(f \) está contida no disco \(\mathbb{D}(L, \varepsilon) \). Em termos matemáticos:

\[
\forall \varepsilon > 0, \exists \delta > 0; z \in A \cap \mathbb{D}^*(z_0, \delta) \Rightarrow f(z) \in \mathbb{D}(L, \varepsilon)
\]

Dentamos

\[
\lim_{z \to z_0} f(z) = L
\]

Observe que o ponto \(z_0 \) pode não pertencer a \(A \), e mesmo quando pertence, os cálculos só são feitos em um disco furado centrado em \(z_0 \), ou seja, o número \(z_0 \) fica fora dos cálculos. Veja uma ilustração na Figura 4.1.

Proposição 4.2. *Seja a função constante

\[
f : \mathbb{C} \to \mathbb{C}
\]

Então, para todo \(z_0 \in \mathbb{C} \), temos

\[
\lim_{z \to z_0} f(z) = \alpha
\]

Demonstração:

Seja \(\varepsilon > 0 \) dado previamente. Como \(f(z) = \alpha \) para todo \(z \in \mathbb{C} \), então basta tomar qualquer \(\delta > 0 \) e teremos que \(f(z) \in \mathbb{D}(\alpha, \varepsilon) \) sempre que \(z \in \mathbb{D}^*(z_0, \delta) \). □
Proposição 4.3. Seja a função identidade

\[f : \mathbb{C} \rightarrow \mathbb{C} \]

\[z \mapsto z \]

Então, para todo \(z_0 \in \mathbb{C} \), temos

\[\lim_{z \to z_0} f(z) = z_0 \]

Demonstração:

Seja \(\varepsilon > 0 \) dado previamente. Como \(f(z) = z \) para todo \(z \in \mathbb{C} \), então basta tomarmos qualquer \(\delta > 0 \) com \(\delta \leq \varepsilon \) e teremos que \(f(z) \in D(z_0, \varepsilon) \) sempre que \(z \in D(z_0, \delta) \).

Teorema 4.4. Seja \(A \subseteq \mathbb{C} \) uma região e sejam \(f, g : A \rightarrow \mathbb{C} \) funções. Sejam \(z_0 \in \mathbb{C} \) um ponto de acumulação de \(A \) e sejam \(L, M \in \mathbb{C} \) tais que \(\lim_{z \to z_0} f(z) = L \) e \(\lim_{z \to z_0} g(z) = M \) então:

a) \(\lim_{z \to z_0} (f(z) + g(z)) = L + M \);

b) \(\lim_{z \to z_0} (f(z) \cdot g(z)) = L \cdot M \);

Demonstração:

Fixemos um \(\varepsilon > 0 \).

Item a):

Pela definição de limite, existem \(\delta_1 > 0 \) e \(\delta_2 > 0 \) tais que

\[
\begin{align*}
|f(z) - L| < \frac{\varepsilon}{2}, & \text{ se } 0 < |z - z_0| < \delta_1 \\
|g(z) - M| < \frac{\varepsilon}{2}, & \text{ se } 0 < |z - z_0| < \delta_2
\end{align*}
\]
Se tomarmos um $\delta > 0$ tal que $\delta \leq \min \{\delta_1, \delta_2\}$ teremos que, se $0 < |z - z_0| < \delta$ então

\[
|f(z) + g(z) - (L + M)| = |f(z) - L + g(z) - M| \\
\leq |f(z) - L| + |g(z) - M| \\
< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\
= \varepsilon
\]

Item b):

Pela definição de limite, existem $\delta_1 > 0$ e $\delta_2 > 0$ tais que

\[
\begin{cases}
|f(z) - L| < \frac{\varepsilon}{2(|M| + 1)} , \text{ se } 0 < |z - z_0| < \delta_1 \\
|g(z) - M| < \frac{\varepsilon}{2(|L| + 1)} , \text{ se } 0 < |z - z_0| < \delta_2
\end{cases}
\]

Tomamos δ_2 de forma que

\[|g(z) - M| < 1, \text{ se } 0 < |z - z_0| < \delta_2\]

Para isso, basta diminuir o valor de δ_2 se for necessário.

Neste caso, se $0 < |z - z_0| < \delta_2$, então:

\[|g(z)| = |M + g(z) - M| \\
\leq |M| + |g(z) - M| \\
< |M| + 1
\]

Portanto, se tomarmos um $\delta > 0$ tal que $\delta \leq \min \{\delta_1, \delta_2\}$ teremos que, se $0 < |z - z_0| < \delta$ então

\[
|f(z) \cdot g(z) - L \cdot M| = |f(z) \cdot g(z) - L \cdot g(z) + L \cdot g(z) - L \cdot M| \\
= |(f(z) - L) \cdot g(z) + L \cdot (g(z) - M)| \\
\leq |f(z) - L| \cdot |g(z)| + |L| \cdot |g(z) - M| \\
< \frac{\varepsilon}{2(|M| + 1)} \cdot (|M| + 1) + |L| \cdot \frac{\varepsilon}{2(|L| + 1)} \\
= \frac{\varepsilon}{2} + \frac{|L|}{2} \cdot \frac{\varepsilon}{2} \\
< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\
= \varepsilon
\]

\[\square\]

Corolário 4.5. Seja $A \subseteq \mathbb{C}$ uma região e seja $f : A \to \mathbb{C}$ uma função. Seja $z_0 \in \mathbb{C}$ um ponto de acumulação de A seja $L \in \mathbb{C}$ tal que $\lim_{z \to z_0} f(z) = L$ então:

a) $\lim_{z \to z_0} (\alpha \cdot f(z)) = \alpha \cdot L$, $\forall \alpha \in \mathbb{C}$. Em particular $\lim_{z \to z_0} (-f(z)) = -L$;

b) $\lim_{z \to z_0} (f(z))^n = L^n$, $\forall n \in \mathbb{N}$;
Demonstração:

É um resultado direto do Teorema 4.4. No item a) considera-se a constante \(a \) como uma função constante e no item b) basta aplicar o Teorema 4.4 juntamente com a indução matemática.

Corolário 4.6. Seja \(p(z) = a_n z^n + \cdots + a_2 z^2 + a_1 z + a_0 \) uma função polinomial em \(\mathbb{C} \). Então

\[
\lim_{z \to z_0} p(z) = a_n z_0^n + \cdots + a_2 z_0^2 + a_1 z_0 + a_0
\]

ou seja, \(\lim_{z \to z_0} p(z) = p(z_0) \).

Demonstração:

Basta combinar as proposições 4.2 e 4.3 com o Teorema 4.4 e o Corolário 4.5.

Teorema 4.7. Seja \(A \subset \mathbb{C} \) uma região e seja \(f : A \to \mathbb{C} \) uma função. Seja \(z_0 \in \mathbb{C} \) um ponto de acumulação de \(A \) e seja \(L \in \mathbb{C} \) tal que \(\lim_{z \to z_0} f(z) = L \) então, se \(L \neq 0 \), temos

\[
\lim_{z \to z_0} \frac{1}{f(z)} = \frac{1}{L}
\]

Demonstração:

Pela definição de limite, existe \(\delta > 0 \) tal que

\[
|f(z) - L| < \frac{|L|^2 - \varepsilon}{2}, \text{ se } 0 < |z - z_0| < \delta
\]

Como \(L \neq 0 \), podemos tomar \(\delta \) de forma que

\[
|f(z) - L| < \frac{|L|}{2}, \text{ sempre que } 0 < |z - z_0| < \delta
\]

Para isso, basta diminuir o valor de \(\delta \) se for necessário.

Neste caso, se \(0 < |z - z_0| < \delta \), então:

\[
|L| < |L - f(z) + f(z)| \\
\leq |L - f(z)| + |f(z)| \\
\leq \frac{|L|}{2} + |f(z)|
\]

Logo \(|f(z)| > \frac{|L|}{2} \) e então \(\left| \frac{1}{f(z)} \right| < \frac{2}{L} \).

E portanto, temos:
4.1 Limites

$$\left| \frac{1}{f(z)} - \frac{1}{L} \right| = \left| \frac{L - f(z)}{L \cdot f(z)} \right|$$

$$= \left| (f(z) - L) \cdot \frac{1}{L} \cdot \frac{1}{f(z)} \right|$$

$$< \frac{|L|^2 \cdot \varepsilon}{2} \cdot \left| \frac{1}{L} \right| \cdot \left| \frac{2}{L} \right|$$

$$= \varepsilon$$

Corolário 4.8

Seja $A \subset \mathbb{C}$ uma região e Sejam $f, g : A \to \mathbb{C}$ funções. Seja $z_0 \in \mathbb{C}$ um ponto de acumulação de A e sejam $L, M \in \mathbb{C}$ tais que \(\lim_{z \to z_0} f(z) = L \) e \(\lim_{z \to z_0} g(z) = M \) então:

a) \(\lim_{z \to z_0} (f(z) - g(z)) = L - M \);

b) Se $M \neq 0$, então \(\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{L}{M} \).

Demonstração:

Basta combinar o Teorema 4.4 com o Corolário 4.5 e com o Teorema 4.7.

Exemplo 4.9.

\[
\lim_{z \to i} (z^2 + 1) = i^2 + 1 = 0
\]

Pois $z^2 + 1$ é um polinômio (veja o Corolário 4.6). Aqui o conjunto A é todo o plano complexo.

Exemplo 4.10.

\[
\lim_{z \to 2i} \frac{z^3 + i}{z^2 + 1} = \frac{7}{3}i
\]

Pois $z^3 + i$ e $z^2 + 1$ são polinômios. Aqui o conjunto A é todo o plano complexo menos os pontos $-i$ e i, ou seja, $A = \mathbb{C} \setminus \{-i, i\}$.

Veja que \(\lim_{z \to 2i} (z^3 + i) = -7i \) e \(\lim_{z \to 2i} (z^2 + 1) = -3 \). Então é só fazer uso do Corolário 4.8.

Exemplo 4.11.

\[
\lim_{z \to 0} \frac{z}{z} = \lim_{z \to 0} 1 = 1
\]

Veja que $A = \mathbb{C}^\ast$, e em A, temos $\frac{z}{z} = 1$.

Exemplo 4.12.

\[
\lim_{z \to 1} \frac{z^2 - 1}{z - 1} = \lim_{z \to 1} \frac{(z - 1)(z + 1)}{z - 1} = \lim_{z \to 1} (z + 1) = 2
\]

Veja que $A = \mathbb{C} \setminus \{1\}$, isso permite a divisão por $(z - 1)$ no numerador e denominador da fração.

Exemplo 4.13.

\[
\lim_{z \to 0} \frac{z^3 - 2iz^4}{z^2 - 2z^3} = \lim_{z \to 0} \frac{z - 2iz^2}{1 - 2z} = \frac{0}{1} = 0
\]

Veja que $A = \mathbb{C}^\ast$, isso permite a divisão por z^2 no numerador e denominador da fração.
4.2 Continuidade

Definição 4.14. Seja $A \subset \mathbb{C}$ um aberto. Dizemos que a função $f : A \rightarrow \mathbb{C}$ é contínua no ponto $z_0 \in A$ se

$$
\lim_{z \to z_0} f(z) = f(z_0)
$$

Se a função é “contínua” em todo ponto de A dizemos que f é contínua em A.

Exemplo 4.15. Funções polinomiais são contínuas em todo ponto de \mathbb{C}. Veja o Corolário 4.6.

Teorema 4.16. Seja $A \subset \mathbb{C}$ uma região e sejam $f, g : A \rightarrow \mathbb{C}$ funções. Seja $z_0 \in A$ Se f e g são contínuas em z_0 então:

a) $h(z) = f(z) + g(z)$ é contínua em z_0;

b) $h(z) = f(z) - g(z)$ é contínua em z_0;

c) $h(z) = f(z) \cdot g(z)$ é contínua em z_0;

d) Se $g(z_0) \neq 0$ então $h(z) = \frac{f(z)}{g(z)}$ é contínua em z_0.

Demonstração:

Como $\lim_{z \to z_0} f(z) = f(z_0)$ e $\lim_{z \to z_0} g(z) = g(z_0)$, basta usar o Teorema 4.4 e o Corolário 4.8.

Teorema 4.17. Sejam $A, B \subset \mathbb{C}$ regiões e $f : A \rightarrow \mathbb{C}$ e $g : B \rightarrow \mathbb{C}$ funções. Seja $z_0 \in \mathbb{C}$ um ponto de acumulação de A e seja $L \in B$ tal que $\lim_{z \to z_0} f(z) = L$. Se g é contínua em L então $\lim_{z \to z_0} (g \circ f)(z)$ existe e $\lim_{z \to z_0} (g \circ f)(z) = g(L)$

Demonstração:

Seja $\varepsilon > 0$. Como g é contínua em L então existe $\eta > 0$ tal que se $f(z) \in B$ e $|f(z) - L| < \eta$ então $|g(f(z)) - g(L)| < \varepsilon$. Como $\lim_{z \to z_0} f(z) = L$ então existe $\delta > 0$ tal que se $z \in A$ e $0 < |z - z_0| < \delta$ então $|f(z) - L| < \eta$.

Corolário 4.18. Sejam $A, B \subset \mathbb{C}$ regiões e $f : A \rightarrow \mathbb{C}$ e $g : B \rightarrow \mathbb{C}$ funções. Seja $z_0 \in A$ tal que $f(z_0) \in B$. Se f é contínua em z_0 e g é contínua em $f(z_0)$ então $(g \circ f)(z)$ é contínua em z_0.

Demonstração:

De fato. Visto que $\lim_{z \to z_0} f(z) = f(z_0)$ e $f(z_0) \in B$ então, pelo Teorema 4.17, existe o limite $\lim_{z \to z_0} (g \circ f)(z)$, e então $\lim_{z \to z_0} (g \circ f)(z) = g(f(z_0))$.

4.3 Limites infinitos

Consideremos uma função $f : A \rightarrow \mathbb{C}$, onde $A \subset \mathbb{C}$ é uma região.

Seja $z_0 \in \mathbb{C}$ um ponto de acumulação de A. Dizemos que o limite de $f(z)$ quando z tende a z_0 é ∞ (infinito) se, para todo $K > 0$ existe $\delta > 0$ tal que $|f(z)| > K$ sempre que $z \in A$ e $|z - z_0| < \delta$. Em termos matemáticos escrevemos:
\[\forall K > 0, \exists \delta > 0; z \in A \text{ e } |z - z_0| < \delta \Rightarrow |f(z)| > K\]

Outra forma de definir é a seguinte:

Para todo \(K > 0 \) existe \(\delta > 0 \) tal que, se \(z \in A \cap \mathbb{D}^*(z_0, \delta) \) então \(f(z) \in \mathbb{C} - \mathbb{D}(0, K) \), ou seja, a imagem do conjunto \(\mathbb{D}^*(z_0, \delta) \cap A \) pela função \(f \), está contida no complementar do disco \(\mathbb{D}(0, K) \). Em termos matemáticos escrevemos:

\[\forall K > 0, \exists \delta > 0; z \in A \cap \mathbb{D}^*(z_0, \delta) \Rightarrow f(z) \in \mathbb{C} - \mathbb{D}(0, K)\]

E denotamos

\[\lim_{z \to z_0} f(z) = \infty\]

Observe que o ponto \(z_0 \) pode não pertencer a \(A \), e mesmo quando pertence, os cálculos só são feitos em um disco furado centrado em \(z_0 \), ou seja, o número \(z_0 \) fica fora dos cálculos.

4.4 Limites no infinito

Consideremos uma função \(f : A \to \mathbb{C} \), onde \(A \) é uma região ilimitada.

Seja \(L \in \mathbb{C} \). Dizemos que o limite de \(f(z) \) quando \(z \) tende ao infinito é \(L \) se, para todo \(\epsilon > 0 \) existir \(R > 0 \) tal que \(|f(z) - L| < \epsilon \) sempre que \(z \in A \) e \(|z| > R \). Em termos matemáticos escrevemos:

\[\forall \epsilon > 0, \exists R > 0; z \in A \text{ e } |z| > R \Rightarrow |f(z) - L| < \epsilon\]

Outra forma de definir é a seguinte:

Para todo \(\epsilon > 0 \) existe \(R > 0 \) tal que, se \(z \in A - \mathbb{D}(0, R) \) então \(f(z) \in \mathbb{D}(L, \epsilon) \), ou seja, a imagem do conjunto \(A - \mathbb{D}(0, R) \) pela função \(f \), está contida no disco \(\mathbb{D}(L, \epsilon) \). Em termos matemáticos escrevemos:

\[\forall \epsilon > 0, \exists R > 0; z \in A - \mathbb{D}(0, R) \Rightarrow f(z) \in \mathbb{D}(L, \epsilon)\]

E denotamos

\[\lim_{z \to \infty} f(z) = L\]

4.5 Limites infinitos no infinito

Consideremos uma função \(f : A \to \mathbb{C} \), onde \(A \) é uma região ilimitada.

Dizemos que o limite de \(f(z) \) quando \(z \) tende ao infinito é \(\infty \) se, para todo \(K > 0 \) existir \(R > 0 \) tal que \(|f(z)| > K \) sempre que \(z \in A \) e \(|z| > R \). Em termos matemáticos escrevemos:

\[\forall K > 0, \exists R > 0; z \in A \text{ e } |z| > R \Rightarrow |f(z)| > K\]

Outra forma de definir é a seguinte:

Para todo \(K > 0 \) existe \(R > 0 \) tal que, se \(z \in A - \mathbb{D}(0, R) \) então \(f(z) \in \mathbb{C} - \mathbb{D}(0, K) \), ou seja, a imagem do conjunto \(A - \mathbb{D}(0, R) \) pela função \(f \), está contida no complementar do disco \(\mathbb{D}(0, K) \). Em termos matemáticos escrevemos:

\[\forall K > 0, \exists R > 0; z \in A - \mathbb{D}(0, R) \Rightarrow f(z) \in \mathbb{C} - \mathbb{D}(0, K)\]

E denotamos

\[\lim_{z \to \infty} f(z) = \infty\]
4.6 Derivação complexa

Seja \(\Omega \subset \mathbb{C} \) uma região e \(z_0 \in \Omega \). Seja \(f : \Omega \to \mathbb{C} \) uma função. Dizemos que \(f \) tem "derivada complexa" em \(z_0 \) se o limite

\[
\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}
\]

 existe. Neste caso denotamos esse limite por \(f'(z_0) \) que é a derivada de \(f \) em \(z_0 \).

Proposição 4.19. Se \(f : \Omega \to \mathbb{C} \) tem derivada complexa em um ponto \(z_0 \in \Omega \) então \(f \) é contínua em \(z_0 \).

Demonstração:

Basta mostrar que \(\lim_{z \to z_0} |f(z) - f(z_0)| = 0 \):

\[
\lim_{z \to z_0} |f(z) - f(z_0)| = \lim_{z \to z_0} \frac{|f(z) - f(z_0)|}{|z - z_0|} \cdot |z - z_0|
\]

\[
= \lim_{z \to z_0} \frac{|f(z) - f(z_0)|}{|z - z_0|} \cdot \lim_{z \to z_0} |z - z_0|
\]

\[
= |f'(z_0)| \cdot 0
\]

\[
= 0
\]

\[\square\]

Teorema 4.20 (Condições de Cauchy-Riemann). Seja \(\Omega \subset \mathbb{C} \) um aberto de \(\mathbb{C} \) e \(z_0 = x_0 + iy_0 \) um ponto de \(\Omega \). Seja \(f : \Omega \to \mathbb{C} \) uma função. Podemos escrever

\[
f(x + iy) = u(x + iy) + iv(x + iy)
\]

onde \(u, v : \Omega \to \mathbb{R} \) são funções reais. \(u \) e \(v \) são chamadas "parte real" e "parte imaginária" de \(f \). Se as derivadas parciais \(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x} \) e \(\frac{\partial v}{\partial y} \) existem e são contínuas em \(z_0 = x_0 + iy_0 \) e satisfazem às condições

\[
\begin{align*}
\frac{\partial u}{\partial x}(z_0) &= \frac{\partial v}{\partial y}(z_0) \\
\frac{\partial u}{\partial y}(z_0) &= -\frac{\partial v}{\partial x}(z_0)
\end{align*}
\]

Então \(f \) possui derivada complexa em \(z_0 \). Essas condições são chamadas "Condições de Cauchy-Riemann".

Demonstração:

Se as derivadas parciais de primeira ordem de \(u \) e \(v \) existem e são contínuas em \(z_0 \) então, considerando-se \(f = u + iv \) como uma função de \(\mathbb{R}^2 \) em \(\mathbb{R}^2 \) e colocando \(a + bi \) como \(\begin{pmatrix} a \\ b \end{pmatrix} \) temos:

\[
\begin{pmatrix}
\frac{u(x_0 + h, y_0 + k)}{v(x_0 + h, y_0 + k)} - \frac{u(x_0, y_0)}{v(x_0, y_0)} + \frac{u(x_0, y_0) - u(x_0 + h, y_0)}{v(x_0, y_0) - v(x_0 + h, y_0)} \\
v(x_0 + h, y_0 + k) - v(x_0, y_0)
\end{pmatrix}
\cdot
\begin{pmatrix} h \\ k \end{pmatrix}
\]

Onde \(\lim_{(h,k) \to (0,0)} \frac{|(R_1, R_2)|}{|(h,k)|} = 0 \), ou seja, \(\lim_{(h,k) \to (0,0)} \frac{\sqrt{R_1^2 + R_2^2}}{\sqrt{h^2 + k^2}} = 0 \).
Isso significa que
\[
\lim_{h+ik \to 0} \left| \frac{R_1 + iR_2}{h + ik} \right|^2 = \lim_{(h,k) \to (0,0)} \frac{R_1^2 + R_2^2}{h^2 + k^2} = 0
\]

Logo
\[
\lim_{h+ik \to 0} \frac{R_1 + iR_2}{h + ik} = 0
\]

Se \(f \) satisfaz as condições de Cauchy-Riemann então,
\[
\left(\begin{array}{cc}
 u_x(x_0, y_0) & u_y(x_0, y_0) \\
 v_x(x_0, y_0) & v_y(x_0, y_0)
\end{array} \right) \cdot \left(\begin{array}{c}
 h \\
 k
\end{array} \right) = \left(\begin{array}{cc}
 u_x(x_0, y_0) & -v_x(x_0, y_0) \\
 v_x(x_0, y_0) & u_y(x_0, y_0)
\end{array} \right) \cdot \left(\begin{array}{c}
 h \\
 k
\end{array} \right) = (u_x(x_0, y_0) + iv_x(x_0, y_0)) \cdot (h + ik)
\]

veja na sessão 1, o texto sobre produtos de números complexos. Assim, temos
\[
\lim_{h+ik \to 0} \frac{f(z_0 + h + ik) - f(z_0)}{h + ik} = \lim_{h+ik \to 0} \frac{(u((x_0 + h) + i(y_0 + k)) + iv((x_0 + h) + i(y_0 + k))) - (u(x_0 + iy_0) + iv(x_0 + iy_0))}{h + ik}
\]
\[
= \lim_{h+ik \to 0} \frac{(u_x(x_0, y_0) + iv_x(x_0, y_0)) \cdot (h + ik) + R_1 + iR_2}{h + ik}
\]
\[
= (u_x(x_0, y_0) + iv_x(x_0, y_0)) + \lim_{h+ik \to 0} \frac{R_1 + iR_2}{h + ik}
\]
\[
= u_x(x_0, y_0) + iv_x(x_0, y_0)
\]

Como o limite existe, então \(f \) tem derivada complexa em \((x_0, y_0)\).

\[\square\]

Definição 4.21. Seja \(\Omega \subset \mathbb{C} \) uma região. Uma função \(f : \Omega \to \mathbb{C} \) é chamada de "função holomorfa" em \(\Omega \) se \(f \) tem derivada complexa em todos os pontos de \(\Omega \). Neste caso, denotamos por \(f' \) a função derivada de \(f \), onde \(f'(z) \) é a derivada de \(f \) em \(z \in \Omega \).

Se \(f : \mathbb{C} \to \mathbb{C} \) é holomorfa em todo ponto de \(\mathbb{C} \), dizemos que \(f \) é "inteira".

Seja \(\Omega \subset \mathbb{C} \) uma região e \(f : \Omega \to \mathbb{C} \) uma função. Se \(f \) satisfaz as condições de Cauchy-Riemann em todo ponto de \(\Omega \) então \(f \) é holomorfa em \(\Omega \).

Exemplo 4.22. A função \(\exp(x + iy) = e^x \cos(y) + i \sin(y) \) é inteira.

De fato \(\exp(x + iy) = e^x \cos(y) + i e^x \sin(y) \) e temos
\[
\begin{align*}
\frac{\partial}{\partial x} (e^x \cos(y)) &= e^x \cos(y) \\
\frac{\partial}{\partial y} (e^x \cos(y)) &= -e^x \sin(y) \\
\frac{\partial}{\partial x} (e^x \sin(y)) &= e^x \cos(y) \\
\frac{\partial}{\partial y} (e^x \sin(y)) &= e^x \sin(y)
\end{align*}
\]
As derivadas parciais de primeira ordem são funções contínuas e satisfazem às condições de Cauchy-Riemann em todo ponto do plano. Portanto é uma função holomorfa em todo o plano. Logo é inteira.

Denotaremos a por \(\mathcal{H}(\Omega) \) o conjunto de todas a funções holomorfas no aberto \(\Omega \).
Proposição 4.23. A função constante

\[f : \mathbb{C} \to \mathbb{C} \]
\[\frac{z}{z} \implies \alpha \]

é inteira e \(f'(z) = 0, \forall z \in \mathbb{C} \).

Demonstração:
Seja \(z_0 \in \mathbb{C} \) então

\[\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{\alpha - \alpha}{z - z_0} = \lim_{z \to z_0} 0 = 0 \]

Proposição 4.24. A função identidade

\[f : \mathbb{C} \to \mathbb{C} \]
\[\frac{z}{z} \implies 1 \]

é inteira e \(f'(z) = 1, \forall z \in \mathbb{C} \).

Demonstração:
Seja \(z_0 \in \mathbb{C} \) então

\[\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{z - z_0}{z - z_0} = \lim_{z \to z_0} 1 = 1 \]

Proposição 4.25. Seja

\[f : \mathbb{C} \to \mathbb{C} \]
\[\frac{z}{z} \implies z^n \]

então \(f \) é inteira e \(f'(z) = nz^{n-1} \).

Demonstração:
Seja \(z_0 \in \mathbb{C} \) então

\[\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{z^n - z_0^n}{z - z_0} = \lim_{z \to z_0} \left(z^{n-1} + z^{n-2} \cdot z_0 + \cdots + z \cdot z_0^{n-2} + z_0^{n-1} \right) = \lim_{z \to z_0} \left(\frac{z^{n-1} + z^{n-2} \cdot z_0 + \cdots + z \cdot z_0^{n-2} + z_0^{n-1}}{z - z_0} \right) = \frac{z_0^{n-1} + z_0^{n-2} \cdot z_0 + \cdots + z_0 \cdot z_0^{n-2} + z_0^{n-1}}{z_0 - z_0} = n \cdot z_0^{n-1} \]

Teorema 4.26. Seja \(A \subset \mathbb{C} \) um aberto e seja \(z_0 \in A \). Sejam \(f, g : A \to \mathbb{C} \) funções holomorfas em \(z_0 \). Então:

a) \(f + g \) é holomorfa em \(z_0 \) e \((f + g)'(z_0) = (f' + g')(z_0) \);
b) \(f - g \) é holomorfa em \(z_0 \) e \((f + g)'(z_0) = (f' - g')(z_0)\);

c) \(f \cdot g \) é holomorfa em \(z_0 \) e \((f \cdot g)'(z_0) = (f' \cdot g + f \cdot g')(z_0)\);

d) Se \(g(z_0) \neq 0 \) então \(\frac{f}{g} \) é holomorfa em \(z_0 \) e
\[
\left(\frac{f}{g} \right)'(z_0) = \frac{f' \cdot g + f \cdot g'}{g^2}(z_0)
\]

Demonstração:

Basta recorrermos aos resultados sobre limites de funções discutidos na seção anterior. Temos assim:

\[
\lim_{z \to z_0} \frac{(f + g)(z) - (f + g)(z_0)}{z - z_0}
= \lim_{z \to z_0} \frac{f(z) + g(z) - f(z_0) - g(z_0)}{z - z_0}
= \lim_{z \to z_0} \left(\frac{f(z) - f(z_0)}{z - z_0} + \frac{g(z) - g(z_0)}{z - z_0} \right)
= f'(z_0) + g'(z_0)
= (f' + g')(z_0)
\]

Portanto \((f + g)'(z_0) = (f' + g')(z_0)\);

\[
\lim_{z \to z_0} \frac{(f - g)(z) - (f - g)(z_0)}{z - z_0}
= \lim_{z \to z_0} \frac{f(z) - g(z) - f(z_0) + g(z_0)}{z - z_0}
= \lim_{z \to z_0} \left(\frac{f(z) - f(z_0)}{z - z_0} - \frac{g(z) - g(z_0)}{z - z_0} \right)
= f'(z_0) - g'(z_0)
= (f' - g')(z_0)
\]

Portanto \((f - g)'(z_0) = (f' - g')(z_0)\);

\[
\lim_{z \to z_0} \frac{(f \cdot g)(z) - (f \cdot g)(z_0)}{z - z_0}
= \lim_{z \to z_0} \frac{f(z) \cdot g(z) - f(z_0) \cdot g(z_0)}{z - z_0}
= \lim_{z \to z_0} \frac{f(z) \cdot g(z) - f(z_0) \cdot g(z) + f(z_0) \cdot g(z) - f(z_0) \cdot g(z_0)}{z - z_0}
= \lim_{z \to z_0} \left(\frac{f(z) - f(z_0)}{z - z_0} \cdot g(z) + f(z_0) \cdot \frac{g(z) - g(z_0)}{z - z_0} \right)
= f'(z_0) \cdot g(z_0) + f(z_0) \cdot g'(z_0)
= (f' \cdot g + f \cdot g')(z_0)
\]

Portanto \((f \cdot g)'(z_0) = (f' \cdot g + f \cdot g')(z_0)\);
Portanto

\[
\lim_{z \to z_0} \frac{f(z) - f(z_0)}{g(z) - g(z_0)} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{g(z) - g(z_0)}
\]

\[
= \lim_{z \to z_0} \frac{1}{g(z)g(z_0)} \cdot \frac{f(z)g(z_0) + f(z)g(z) - f(z)g(z_0) + f(z)g(z_0)}{z - z_0}
\]

\[
= \lim_{z \to z_0} \frac{1}{g(z)g(z_0)} \cdot \left(\frac{f(z) - f(z_0)}{z - z_0} - \frac{g(z) - g(z_0)}{z - z_0} \right)
\]

\[
= \frac{1}{(g(z_0))^2} \cdot (f'(z_0) \cdot g(z_0) + f(z_0) \cdot g'(z_0))
\]

\[
= \frac{f' \cdot g - f' \cdot g'}{g^2}(z_0)
\]

Portanto \(\left(\frac{f}{g} \right)'(z_0) = \frac{f' \cdot g + f' \cdot g'}{g^2}(z_0)\).

\[\square\]

Corolário 4.27. Seja \(p(z) = a_nz^n + \cdots + a_1z + a_0\) um polinômio. Então \(p\) é inteira e

\[
p'(z) = na_nz^{n-1} + \cdots + 2a_2z + a_1
\]

Demonstração:

\[\square\]

Proposição 4.28. Sejam \(A, B \subset \mathbb{C}\) abertos e \(f \in \mathcal{H}(A)\) e \(g \in \mathcal{H}(B)\) tais que \(f(A) \subset B\). Seja \(h = g \circ f\) então \(h \in \mathcal{H}(A)\) e

\[
h'(z_0) = g'(f(z_0)) \cdot f'(z_0)
\]

Demonstração:

Seja \(z_0 \in A\). Como \(f \in \mathcal{H}(A)\) então \(f\) é contínua em \(A\) e temos \(\lim_{z \to z_0} f(z) = f(z_0)\) logo

\[
\lim_{z \to z_0} \frac{h(z) - h(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{g(f(z)) - g(f(z_0))}{z - z_0}
\]

\[
= \lim_{z \to z_0} \left(\frac{g(f(z)) - g(f(z_0))}{f(z) - f(z_0)} \cdot \frac{f(z) - f(z_0)}{z - z_0} \right)
\]

\[
= \lim_{z \to z_0} \frac{g(f(z)) - g(f(z_0))}{f(z) - f(z_0)} \cdot \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}
\]

\[
= g'(f(z_0)) \cdot f'(z_0)
\]

\[\square\]

Proposição 4.29. Sejam \(A, B \subset \mathbb{C}\) abertos e \(g \in \mathcal{H}(B)\). Seja \(f : A \to B\) contínua tal que \(g \circ f(z) = z\) e \(g'(f(z)) \neq 0 \forall z \in A\). Então \(f \in \mathcal{H}(A)\) e

\[
f'(z) = \frac{1}{g'(f(z))}
\]

Se \(g\) é injetiva, \(f\) é chamada “inversa” de \(g\) e é denotada por \(g^{-1}\).
Demonstração:

Seja $z_0 \in A$. Para todo $z \in (A - \{z_0\})$ temos

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{f(z) - f(z_0)}{g(f(z)) - g(f(z_0))}$$

Como f é contínua em A então $\lim_{z \to z_0} f(z) = f(z_0)$ logo

$$\lim_{z \to z_0} \frac{g(f(z)) - g(f(z_0))}{f(z) - f(z_0)} = g'(f(z_0)) \neq 0$$

E portanto

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{g(f(z)) - g(f(z_0))} = \frac{1}{g'(f(z_0))}$$
5.1 Integração

Considere duas funções \(f, g : [a, b] \to \mathbb{R} \) contínuas. Devido à estrutura de corpo de \(\mathbb{C} \), temos a seguinte regra de integração:

\[
\int_a^b (f(t) + ig(t))\,dt = \int_a^b f(t)\,dt + i\int_a^b g(t)\,dt
\]

Definição 5.1. Seja \(\Omega \) um aberto de \(\mathbb{C} \). Um “caminho” em \(\Omega \) é uma função contínua

\[
\gamma : [a, b] \to \Omega \quad \gamma(t) = x(t) + iy(t)
\]

Se \(x(t) \) e \(y(t) \) são funções de classe \(C^1 \) dizemos que o caminho é suave. Neste caso denotamos o vetor tangente a \(\gamma \) no ponto \(\gamma(t) \) por

\[
\gamma'(t) = x'(t) + iy'(t)
\]

Chamamos de “curva”, a imagem de um caminho \(\gamma \) e esta função é chamada de “parametrização” de \(\gamma \).

Definição 5.2. Sejam \(z, w \in \mathbb{C} \). Definimos o segmento orientado que vai de \(z \) a \(w \), como o caminho

\[
\gamma : [0, 1] \to \mathbb{C} \quad \gamma(t) = tz + (1 - t)w
\]

e denotamos por \([z, w]\).

Se \(\gamma(a) = \gamma(b) \) dizemos que o caminho \(\gamma \) é “fechado”. A imagem de um caminho fechado é chamada curva fechada.

Se \(\gamma(t) = \gamma(a), \forall t \in [a, b] \), dizemos que o caminho \(\gamma \) é “constante”. A imagem de um caminho constante é apenas um ponto.

Uma curva em \(\mathbb{C} \) é dita “curva de Jordan” se \(\mathbb{C} - \gamma \) possui exatamente duas componentes conexas. Neste caso, uma destas componentes é ilimitada e a outra é limitada e simplesmente conexa.

Se \(\gamma \) não é suave, mas existir uma partição do intervalo \([a, b]\) dada por

\[
a = t_0 < t_1 < \cdots < t_{n-1} < t_n = b
\]

tal que \(\gamma|_{[t_{i-1}, t_i]} \) é suave para todo \(i = 1, 2, \ldots, n \), dizemos que \(\gamma \) é “suave por partes”, e cada parte \(\gamma([t_{i-1}, t_i]) \) é uma componente suave de \(\gamma \). Se uma curva é imagem de um caminho suave por partes dizemos que essa curva é suave por partes.
Exemplo 5.3. Se \(\triangle \subset \mathbb{C} \) é um triângulo então \(\partial \triangle \) é uma curva de Jordan suave por partes.

Definição 5.4. Seja \(\gamma \) uma curva. Uma “orientação” em \(\gamma \) é um sentido de percurso em \(\gamma \). Uma curva tem duas orientações. Uma parametrização de \(\gamma \) induz naturalmente uma orientação em \(\gamma \).

Quando \(\gamma \) é uma curva de Jordan, chamamos de orientação positiva se o sentido de percurso de \(\gamma \) é no sentido anti-horário, em relação aos pontos da componente limitada de \(\mathbb{C} - \gamma \). A outra orientação é a orientação negativa. Sempre que falarmos de uma curva de Jordan sem mencionar a orientação, estaremos falando da orientação positiva.

Definição 5.5. O comprimento de um caminho suave é o valor da integral

\[
\int_{\gamma} |dz| = \int_{a}^{b} |\gamma'(t)|dt = \int_{a}^{b} \left((x'(t))^2 + (y'(t))^2 \right) dt
\]

Se o caminho não é suave, mas é suave por partes, seu comprimento é a soma dos comprimentos de suas componentes suaves.

Definição 5.6. Seja \(\Omega \subset \mathbb{C} \) um aberto e \(\gamma \subset \Omega \) um caminho suave. Seja \(f : \Omega \to \mathbb{C} \) uma função contínua. Escrevemos

\[
f(z) = u(z) + iv(z)
\]

onde \(u, v : \Omega \to \mathbb{R} \) são funções reais. A integral de \(f \) sobre \(\gamma \) é denotada e calculada da seguinte forma:

\[
\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t)dt = \int_{a}^{b} \left[(u(\gamma(t)) + iv(\gamma(t))) \cdot (x'(t) + iy'(t)) \right] dt
\]

Temos, assim:

\[
\int_{a}^{b} |u(\gamma(t))x'(t) - v(\gamma(t))y'(t)|dt + i \int_{a}^{b} |u(\gamma(t))y'(t) + v(\gamma(t))x'(t)|dt
\]

Se \(\gamma \) não é suave, mas é suave por partes, então \(\int_{\gamma} f(z)dz \) é a soma das integrais nas componentes suaves de \(\gamma \).

Teorema 5.7. Seja \(\Omega \subset \mathbb{C} \) uma região e \(F \in \mathcal{H}(\Omega) \) tal que \(F' \) é contínua. Então

\[
\int_{\gamma} F'(z)dz = 0
\]

para todo caminho \(\gamma \) fechado e suave por partes em \(\Omega \).

Demonstração:

Consideremos uma parametrização de \(\gamma \) dada por

\[
\gamma : [a,b] \to \Omega \quad t \mapsto \gamma(t)
\]

Usando o Teorema Fundamental do Cálculo temos

\[
\int_{\gamma} F'(z)dz = \int_{a}^{b} F'(\gamma(t))\gamma'(t)dt = F(\gamma(b)) - F(\gamma(a)) = 0
\]

Pois \(\gamma(b) = \gamma(a) \).

\[\square \]
Corolário 5.8. Seja $n \in \mathbb{N}$ e seja γ um caminho fechado e suave por partes em \mathbb{C}. A função $z \mapsto z^n$ é uma função inteira (portanto contínua) que é a derivada da função $z \mapsto \frac{z^{n+1}}{n+1}$ que também é inteira logo:

$$
\int_\gamma z^n \, dz = 0
$$

O mesmo vale para a função constante $z \mapsto c$ pois é a derivada de $z \mapsto cz$. Consequentemente, se $p : \mathbb{C} \rightarrow \mathbb{C}$ é uma função polinomial então

$$
\int_\gamma p(z) \, dz = 0
$$

Corolário 5.9. Seja $n \in \mathbb{N}$ com $n \geq 2$ e seja γ um caminho fechado e suave por partes em \mathbb{C}^*. A função $z \mapsto \frac{1}{z^n}$ é uma função (holomorfa) contínua em \mathbb{C}^* que é a derivada da função $z \mapsto \frac{-n-1}{z^{n-1}}$ então:

$$
\int_\gamma z^n \, dz = 0
$$

Teorema 5.10 (Teorema de Cauchy no triângulo). Seja $\Omega \subset \mathbb{C}$ uma região e sejam $\triangle \subset \Omega$ um triângulo fechado e $p \in \Omega$ um ponto. Se $f \in H(\Omega - \{p\})$ e é contínua em p então

$$
\int_{\partial\triangle} f(z) \, dz = 0
$$

Demonstração:

Considere o triângulo \triangle de vértices ordenados $\{a, b, c\}$.

Primeiro supomos que $p \not\in \triangle$.

Tome os pontos médios das arestas conforme a Figura ao lado. Temos então quatro triângulos, que chamaremos $\triangle^1, \triangle^2, \triangle^3$ e \triangle^4 cujos vértices ordenados são:

$$
\{a, b', c'\}, \quad \{c, b', a'\} \\
\{b, a', c'\}, \quad \{a', b', c'\}
$$

Veja que

$$
\int_{\partial\triangle} f(z) \, dz = \sum_{i=1}^{4} \int_{\partial\triangle^i} f(z) \, dz
$$
Escolha o triângulo para o qual \(\left| \int_{\partial \triangle} f(z)dz \right| \) é máximo. Chamaremos esse triângulo de \(\triangle_1 \). Logo

\[
\left| \int_{\partial \triangle} f(z)dz \right| \leq 4 \left| \int_{\partial \triangle_1} f(z)dz \right|
\]

E, por semelhança de triângulos

\[
\int_{\partial \triangle_1} |dz| = 2 \int_{\partial \triangle_1} |dz|
\]

Ou seja, o perímetro de \(\triangle_1 \) é a metade do perímetro de \(\triangle \).

Repetindo a mesma tarefa com o triângulo \(\triangle_1 \), obtemos um triângulo \(\triangle_2 \) tal que

\[
\int_{\partial \triangle_1} f(z)dz \leq 4^n \left| \int_{\partial \triangle_n} f(z)dz \right| \Rightarrow \int_{\partial \triangle_2} f(z)dz \leq 4^2 \left| \int_{\partial \triangle_2} f(z)dz \right|
\]

\[
\int_{\partial \triangle_1} |dz| = 2 \int_{\partial \triangle_2} |dz| \Rightarrow \int_{\partial \triangle_3} |dz| = 2^2 \int_{\partial \triangle_2} |dz|
\]

Repetindo este procedimento encontramos uma família de triângulos fechados \(\{\triangle_n\}_{n \in \mathbb{N}} \) tal que \(\triangle \supset \triangle_1 \supset \triangle_2 \supset \triangle_3 \supset \cdots \), onde

\[
\left| \int_{\partial \triangle} f(z)dz \right| \leq 4^n \left| \int_{\partial \triangle_n} f(z)dz \right|, \forall n \in \mathbb{N}
\]

Denotamos o perímetro de \(\triangle \) por \(L \), logo o perímetro de \(\triangle_n \) é \(\frac{L}{2^n} \).

O conjunto \(\bigcap_{n=1}^{\infty} \triangle_n \) contém apenas um ponto que denotaremos por \(z_0 \).

Visto que \(z_0 \in \triangle \), temos que \(f \) é holomorfa em \(z_0 \) logo

\[
\lim_{z \to z_0} \left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| = 0
\]

Seja \(\varepsilon > 0 \), então existe \(\delta \) tal que, se \(|z - z_0| < \delta \) então

\[
\left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| < \varepsilon
\]

Ou seja,

\[
|f(z) - f(z_0) - f'(z_0)(z - z_0)| < \varepsilon |z - z_0|
\]

Existe \(N \in \mathbb{N} \) tal que

\[
\triangle_N \subset D(z_0, \delta)
\]

Lembramos que para todo ponto \(z \in \triangle_N \) temos \(|z - z_0| < \frac{L}{2N} \) (o perímetro de \(\triangle_N \)).
A expressão \(f(z_0) + f'(z_0)(z - z_0) \) é um polinômio de grau 1 em \(z \), logo, pelo Teorema 5.8 temos

\[
\int_{\partial \Delta_N} [f(z_0) + f'(z_0)(z - z_0)] \, dz = 0
\]

E podemos escrever

\[
\int_{\partial \Delta_N} f(z) \, dz = \int_{\partial \Delta_N} [f(z) - f(z_0) - f'(z_0)(z - z_0)] \, dz
\]

Assim temos

\[
\left| \int_{\partial \Delta_N} f(z) \, dz \right| = \left| \int_{\partial \Delta_N} [f(z) - f(z_0) - f'(z_0)(z - z_0)] \, dz \right|
\]

\[
\leq \int_{\partial \Delta_N} \epsilon |z - z_0| \, dz
\]

\[
< \frac{\epsilon L}{2^N} |dz|
\]

\[
= \frac{\epsilon L}{2^N} \int_{\partial \Delta_N} |dz|
\]

\[
= \frac{\epsilon L}{2^N} \cdot \frac{L}{2^N} = \frac{\epsilon L^2}{4^N}
\]

\[
\left| \int_{\partial \Delta} f(z) \, dz \right| \leq 4^n \left| \int_{\partial \Delta_N} f(z) \, dz \right| < 4^n \cdot \frac{\epsilon L^2}{4^n} = \epsilon L^2
\]

Isso mostra que \(\left| \int_{\partial \Delta} f(z) \, dz \right| \) é menor que qualquer número real positivo, logo \(\left| \int_{\partial \Delta} f(z) \, dz \right| = 0 \), portanto

\[
\int_{\partial \Delta} f(z) \, dz = 0.
\]

Agora consideremos o caso em que \(p \in \Delta \).

Começamos com o caso em que \(p \) é um dos vértices de \(\Delta \).

Considere o triângulo \(\Delta \) com vértices ordenados \(\{a, b, p\} \).
Seja \(r \) um ponto na aresta \([p, a] \) e \(s \) um ponto na aresta \([b, p] \).
Dessa forma dividimos \(\Delta \) em três triângulos com vértices ordenados \(\{a, b, s\} \), \(\{a, s, r\} \), e \(\{r, s, p\} \). Chamaremos este último triângulo de \(\Delta_p \).

Pela primeira parte desta demonstração, a integral no bordo dos dois primeiros triângulos é zero. Logo

\[
\int_{\partial \Delta} f(z) \, dz = \int_{\partial \Delta_p} f(z) \, dz
\]

Seja \(\epsilon > 0 \). Como \(f \) é contínua em \(\Omega \) então e \(\Delta \) é compacto, \(\exists M > 0 \), tal que \(|f(z)| \leq M, \forall z \in \Delta \). Logo, se \(\Delta_p \subset D(p, \epsilon) \) então
\[
\left| \int_{a\Delta} f(z)dz \right| = \left| \int_{a\Delta_p} f(z)dz \right| \\
\leq \int_{a\Delta_p} |f(z)| \cdot |dz| \\
\leq \int_{a\Delta_p} M \cdot |dz| \\
= M \cdot (|p-s| + |r-p| + |r-s|) \\
< M \cdot (\varepsilon + \varepsilon + 2\varepsilon) = 4\varepsilon M
\]

Isso mostra que \(\int_{a\Delta} f(z)dz = 0 \)

Agora, se \(p \) está em uma aresta de \(\Delta \), ligamos \(p \) ao vértice oposto por um segmento de reta e obtemos dois triângulos em que \(p \) é um vértice para cada um deles.

E se \(p \) está no interior de \(\Delta \) ligamos ele aos três vértices por segmentos de retas e obtemos três triângulos onde \(p \) é um vértice para cada um deles. Em ambos os casos, basta aplicar a segunda parte desta demonstração.

Teorema 5.11 (Teorema de Cauchy em um conjunto convexo). Sejam \(\Omega \subset \mathbb{C} \) um conjunto convexo aberto e \(p \in \Omega \) um ponto. Se \(f \in \mathcal{H}(\Omega - \{p\}) \) entâo \(f = F' \), para alguma \(F \in \mathcal{H}(\Omega) \). Logo

\[
\int_{\gamma} f(z)dz = 0
\]

para todo caminho \(\gamma \) fechado e suave por partes em \(\Omega \).

Demonstração:

Fixemos um ponto \(a \in \Omega \). Para todo \(z \in \Omega \), temos \([a,z] \subset \Omega \), pois \(\Omega \) é convexo. Podemos, então, definir a função

\[
F : \Omega \rightarrow \mathbb{C} \\
z \mapsto \int_{[a,z]} f(w)dw
\]
Como \[\frac{F(z) - F(z_0)}{z - z_0} = \frac{1}{z - z_0} \left(\int_{[a,z]} f(w)dw - \int_{[a,z_0]} f(w)dw \right) \]
Pelo Teorema 5.10 temos
\[\int_{[a,z]} f(w)dw + \int_{[z_0,z]} f(w)dw + \int_{[z,a]} f(w)dw = 0 \]
Logo
\[\int_{[a,z]} f(w)dw - \int_{[z_0,z]} f(w)dw - \int_{[z,a]} f(w)dw = 0 \]
⇒ \[\int_{[z_0,z]} f(w)dw = \int_{[a,z]} f(w)dw - \int_{[a,z_0]} f(w)dw \]
Substituindo esta expressão em (5.1) temos:
\[\frac{F(z) - F(z_0)}{z - z_0} = \frac{1}{z - z_0} \int_{[z_0,z]} f(w)dw \]
Como \(f(z_0) \) é uma constante, temos:
\[\int_{[z_0,z]} f(z_0)dw = f(z_0)(z - z_0) \Rightarrow f(z_0) = \frac{1}{z - z_0} \int_{[z_0,z]} f(z_0)dw \]
Então
\[\frac{F(z) - F(z_0)}{z - z_0} - f(z_0) = \frac{1}{z - z_0} \left(\int_{[z_0,z]} (f(w) - f(z_0))dw \right) \]
Seja \(\epsilon > 0 \). Como \(f \) é contínua \(\exists \delta > 0 \) tal que \(|f(w) - f(z_0)| < \epsilon \) sempre que \(|z - z_0| < \delta \).
Portanto, se \(|z - z_0| < \delta \) temos
\[\left| \frac{F(z) - F(z_0)}{z - z_0} - f(z_0) \right| = \frac{1}{|z - z_0|} \left| \int_{[z_0,z]} (f(w) - f(z_0))dw \right| \]
\[\leq \frac{1}{|z - z_0|} \int_{[z_0,z]} |f(w) - f(z_0)| \cdot |dw| \]
\[< \frac{1}{|z - z_0|} \int_{[z_0,z]} \epsilon \cdot |dw| \]
\[= \frac{\epsilon}{|z - z_0|} \cdot \epsilon \cdot |z - z_0| \]
\[= \epsilon \]
Isso mostra que
\[\lim_{z \to z_0} \left(\frac{F(z) - F(z_0)}{z - z_0} - f(z_0) \right) = 0 \]
Ou seja,
\[\lim_{z \to z_0} \frac{F(z) - F(z_0)}{z - z_0} = f(z_0) \Rightarrow f(z_0) = F'(z_0) \]
Como \(z_0 \) foi tomado arbitrariamente, concluímos que \(f(z) = F'(z) \), \(\forall z \in \Omega \).

Agora, para finalizar é só usar o resultado do Teorema 5.7. \[\square \]

Teorema 5.12 (O princípio do argumento - um caso mais simples). Seja \(z \in \mathbb{C} \), e seja \(\gamma \in \mathbb{C} - \{p\} \) um caminho suave tal que nenhuma reta que passa por \(z \) é tangente a \(\gamma \). Então
\[\int_{\gamma} \frac{dw}{w - z} = 2n \pi \]
onde \(n \in \mathbb{Z}^* \) é o número de voltas que \(\gamma \) dá em torno do ponto \(z \). \(n \) será positivo se a orientação de \(\gamma \) for no sentido horário e negativo caso contrário.
Demonstração:

Por hipótese, \(\gamma \) dá pelo menos uma volta em torno de \(z \).

Suponha que \(\gamma \) dá \(n \) voltas no sentido positivo (Na figura ao lado temos um exemplo de uma curva que dá duas voltas em torno da origem). Então podemos parametrizar \(\gamma \) da seguinte forma:

\[
\gamma : [0, n\pi] \rightarrow \mathbb{C} - \{az\}
\]

onde

\[
f : [0, n\pi] \rightarrow \mathbb{R}^+ \quad \text{tal que} \quad |\gamma(t) - z|
\]

\[
\int_{\gamma} \frac{dw}{w - z} = \int_{0}^{2n\pi} \frac{f'(t)(\cos(t) + isen(t)) + f(t)(-sen(t) + i\cos(t))}{f(t)(\cos(t) + isen(t))} dt
\]

\[
= \int_{0}^{2n\pi} \frac{f'(t)}{f(t)} dt + \int_{0}^{2n\pi} \frac{-sen(t) + i\cos(t)}{\cos(t) + isen(t)} dt
\]

\[
= \int_{0}^{2n\pi} \frac{d}{dt} \log(f(t)) dt + \int_{0}^{2n\pi} i(\cos(t) + isen(t)) dt
\]

\[
= \log(f(t)) \Big|_{0}^{2n\pi} + \int_{0}^{2n\pi} idt
\]

\[
= i \int_{0}^{2n\pi} dt = 2n\pi i
\]

Pois \(f(2n\pi) = f(0) \).

O caso em que \(n \) é negativo é idêntico. \(\square \)

Na verdade esse teorema vale qualquer caminho suave por partes em \(\mathbb{C} - \{z\} \). Mas não faremos o caso geral aqui.

Teorema 5.13 (A fórmula de Cauchy em conjunto convexos). Seja \(\Omega \) um aberto convexo e seja \(\gamma \subset \Omega \) uma curva de Jordan suave tal que a componente simplesmente conexa de \(\Omega - \gamma \) é convexa. Seja \(f \in H(\Omega) \). Se \(z \) está na componente simplesmente conexa de \(\Omega - \gamma \) então

\[
f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw
\]

E se \(z \) está na outra componente conexa de \(\Omega - \gamma \) então

\[
\int_{\gamma} \frac{f(w)}{w - z} dw = 0
\]

Demonstração:

Se \(z \) não está na componente simplesmente conexa de \(\Omega - \gamma \) então existe um aberto convexo \(A \subset \Omega \) tal
que \(\gamma \subset A \) e \(z \not\in A \), logo \(A \) contém a componente simplesmente conexa de \(\Omega - \gamma \) e \(\frac{f(w)}{w-z} \) como função de \(w \) é holomorfa em \(A \) logo, pelo 5.11
\[
\int_{\gamma} \frac{f(w)}{w-z} \, dw = 0
\]
Agora suponha que \(z \) está na componente simplesmente conexa de \(\Omega - \gamma \).

Tomemos a função
\[
g(w) = \begin{cases}
 \frac{f(w) - f(z)}{w-z}, & \text{se } w \in \Omega - \{z\} \\
 f'(z), & \text{se } w = z
\end{cases}
\]
A função \(g \) é holomorfa em \(w \in \Omega - \{z\} \) e é contínua em \(z \), logo, pelo teorema 5.11
\[
\int_{\gamma} g(w) \, dw = 0
\]
Então, usando o Princípio do Argumento (Teorema 5.12), temos
\[
0 = \int_{\gamma} \frac{f(w) - f(z)}{w-z} \, dw = \int_{\gamma} \frac{f(w)}{w-z} \, dw - f(z) \cdot \int_{\gamma} \frac{dw}{w-z}
\]
\[
\Rightarrow \int_{\gamma} \frac{f(w)}{w-z} \, dw = f(z) \cdot \int_{\gamma} \frac{dw}{w-z} = f(z) \cdot 2\pi i
\]
Veja que nenhuma reta tangente a \(\gamma \) interseca a componente simplesmente conexa de \(\Omega - \gamma \). Isso mostra que
\[
f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} \, dw
\]
Em resumo, o que o Teorema 5.13 nos diz que na componente simplesmente conexa de \(\Omega - \gamma \), os valores de \(f \) são determinados apenas por seus valores sobre \(\gamma \).
6.1 Sequências de funções holomorfas

Seja $\Omega \in \mathbb{C}$ um aberto. Como foi visto no capítulo anterior, definimos por $\mathcal{H}(\Omega)$ o conjunto das funções holomorfas em Ω. Podemos ver facilmente que $\mathcal{H}(\Omega)$ é um domínio de integridade (Veja o Teorema 4.26).

Uma sequência de funções holomorfas em Ω é uma função

$$\begin{align*}
N & \to \mathcal{H}(\Omega) \\
n & \mapsto f_n
\end{align*}$$

(6.1)

Representamos a sequência (6.1) apenas por (f_n). Uma sequência de funções é, na verdade, uma lista de funções. Analógico ao que estudamos em sequência de números complexos.

Dizemos que a sequência converge (6.1) se a sequência de números complexos $(f_n(z))$ converge para todo $z \in \Omega$. Seja $f : \Omega \to \mathbb{C}$ a função tal que $f_n(z) \to f(z)$, $\forall z \in \Omega$. Denotamos $\lim f_n = f$ ou $f_n \to f$.

Definição 6.1. Seja $\Omega \subset \mathbb{C}$ um aberto e (f_n) uma sequência convergente em $\mathcal{H}(\Omega)$ e seja $f : \Omega \to \mathbb{C}$ tal que $f_n \to f$. Seja $K \subset \Omega$ um compacto. Dizemos que (f_n) converge para f uniformemente em K se, para todo $\epsilon > 0$, tomado arbitrariamente, existe $N \in \mathbb{N}$ tal que $|f_n(z) - f(z)| < \epsilon$, $\forall z \in K$ e $\forall n > N$.

Se (f_n) converge uniformemente para f em todo subconjunto compacto de Ω dizemos que “(f_n) converge para f uniformemente em partes compactas de Ω”. Denotamos $f_n \xrightarrow{a.p.c.} f$.

Exemplo 6.2. Considere a sequência (f_n) em $\mathcal{H}(\mathbb{C})$, onde

$$f_n(z) = z^n$$

Então $f_n \xrightarrow{a.p.c.} 0$ em $\mathbb{D}(0, 1)$.

De fato, fixemos $r \in (0, 1)$.

Seja $\epsilon > 0$, então, $\forall N > \log_r(\epsilon)$ e $\forall z \in \overline{D}(0, r)$ temos:

$$|z^n| = |z|^n < r^n < r^N < r^{\log_r(\epsilon)} = \epsilon$$

Ou seja, (f_n) converge para 0 uniformemente em $\overline{D}(0, r)$, $\forall r \in (0, 1)$, consequentemente, em qualquer compacto de $\mathbb{D}(0, 1)$.

Veja que (f_n) não converge em nenhum ponto fora de $\overline{D}(0, 1)$.
6.2 Séries de funções holomorfas

Seja $\Omega \subset \mathbb{C}$ uma região. Uma série de funções em $\mathcal{H}(\Omega)$, é uma sequência de funções (s_n) obtida a partir de uma sequência de funções (f_n) em $\mathcal{H}(\Omega)$, da seguinte forma:

$$s_n = f_1 + f_2 + \cdots + f_n$$

ou seja

$$s_n = \sum_{i=1}^{n} f_i$$

Denotamos essa série por:

$$\sum_{n=1}^{\infty} f_n$$

(6.2)

Se a sequência (s_n) converge em Ω dizemos o mesmo para a série (6.2), caso contrário, dizemos que a série diverge. Se a sequência (s_n) converge uniformemente em partes compactas de Ω dizemos o mesmo para a série (6.2).

6.3 Séries de potências

Seja $z_0 \in \mathbb{C}$. Uma série de potências centrada em z_0 é uma série da forma:

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n, a_n \in \mathbb{C}$$

(6.3)

O “raio de convergência” da série (6.3) é o maior número real $R > 0$ tal que ela converge em todo ponto no disco $D(z_0, R)$.

Inspirados no “teste da razão” e no “teste da raiz” para convergência de séries (veja a seção 3.2), podemos calcular R.

Se a séries (6.3) converge então

$$\limsup \frac{|a_{n+1}(z - z_0)^{n+1}|}{a_n(z - z_0)^n} < 1$$

ou

$$\limsup \sqrt[n]{|a_n(z - z_0)^n|} < 1$$

Então temos

$$\limsup \frac{|a_{n+1}(z - z_0)^{n+1}|}{a_n(z - z_0)^n} = |z - z_0| \cdot \limsup \frac{|a_{n+1}|}{a_n} < 1$$

ou

$$\limsup \sqrt[n]{|a_n(z - z_0)^n|} = |z - z_0| \cdot \limsup \sqrt[n]{|a_n|} < 1$$

Definimos R como:

$$R = \liminf \frac{|a_n|}{|a_{n+1}|}$$

ou

$$R = \liminf \sqrt[|a_n|]{|a_n|}$$
Se \(R > 0 \) então, para todo \(z \in \mathbb{C} \), com \(|z - z_0| < R \), a série (6.3) converge absolutamente (veja a seção 3.2).

A série \(\sum_{n=1}^{\infty} |a_n|r^n \) converge \(\forall r > 0 \), com \(r < R \), consequentemente a série (6.3) converge uniformemente em \(D(z_0, r) \), com isso concluímos que a série (6.3) converge uniformemente em partes compactas no disco \(D(z_0, R) \).

Nota: Nos casos em que as sequências \(\left(\frac{a_n}{a_{n+1}} \right) \) ou \(\left(\frac{1}{\sqrt[n]{|a_n|}} \right) \) convergem, podemos substituir “\(\lim \inf \)” e “\(\lim \sup \)” apenas por “\(\lim \)” conforme vimos na sessão 3.2.

Teorema 6.3. Seja

\[
\sum_{n=0}^{\infty} a_n(z - z_0)^n
\]

uma série de potências centrada em \(z_0 \) e com raio de convergência \(R > 0 \). Seja \(f : D(z_0, R) \to \mathbb{C} \) a função definida por essa série. Então \(f \) é holomorfa em \(D(z_0, R) \) e

\[
f'(x) = \sum_{n=0}^{\infty} na_n(z - z_0)^{n-1}
\]

Demonstração:

Basta mostrarmos para \(z_0 = 0 \). Primeiro verificamos a convergência da série

\[
\sum_{n=1}^{\infty} na_nz^{n-1}
\]

(6.4)

O raio de convergência da série (6.4) é:

\[
\lim \inf \frac{|a_n|}{(n + 1)|a_{n+1}|} = \lim \inf \frac{n}{n + 1} \cdot \lim \inf \frac{|a_n|}{|a_{n+1}|} = 1 \cdot R = R
\]

Ou seja, o raio de convergência da série (6.4) coincide com o raio de convergência da série que define \(f \). Chamaremos de \(g(z) \) a função definida pela série (6.4). Fixemos \(r > 0 \), com \(r < R \).

Para todo \(z, w \in D(0, r) \), com \(w \neq z \), temos

\[
g(z) - f(z) = \sum_{n=1}^{\infty} a_n \left(nz^{n-1} - \frac{z^n - w^n}{z - w} \right)
\]

\[
= \sum_{n=1}^{\infty} a_n \left(n \frac{z^{n-1}}{z - w} \right)
\]

Subtraindo-se a segunda igualdade da primeira temos

\[
z^{n-2}(z - w) + z^{n-3}(z^2 - w^2) + \cdots + z(z^{n-2} - w^{n-2}) + (z^{n-1} - w^{n-1}) =
\]

\[
(z - w) \left((n-1)z^{n-2} + (n-2)z^{n-3}w + \cdots + 2zw^{n-2} + w^{n-2} \right)
\]

Logo,

\[
\frac{|nz^{n-1} - \frac{z^n - w^n}{z - w}|}{|z - w|} \leq |z - w| \frac{|(n-1) + (n-2) + \cdots + 2 + 1| r^{n-2}}{2}
\]

\[
= |z - w| \frac{n(n-1)}{2} r^{n-2}
\]
Pelo teste da razão, a série \(\sum_{n=2}^{\infty} \frac{n(n - 1)}{2} |a_n| r^{n-2} \) converge, visto que \(r < R \). Digamos que \(\sum_{n=2}^{\infty} \frac{n(n - 1)}{2} |a_n| r^{n-2} = A < +\infty \), logo

\[
\left| g(z) - \frac{f(z) - f(w)}{z - w} \right| \leq |z - w| \cdot A
\]

Isso mostra que

\[
\lim_{w \to z} \left| g(z) - \frac{f(z) - f(w)}{z - w} \right| = 0
\]

Ou seja,

\[
g(z) = \lim_{w \to z} \frac{f(z) - f(w)}{z - w} = f'(z)
\]

Como \(r \) foi tomado arbitrariamente então \(f'(z) = g(z) \) em \(D(0, R) \).

Demonstração:

Basta ver que \(f' \) satisfaz as mesmas hipóteses que \(f \) no Teorema 6.3

Corolário 6.4. Se

\[
f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n
\]

Define uma função holomorfa em \(D(z_0, R) \) então:

\[
f^{(k)}(z) = \sum_{n=k}^{\infty} n(n - 1) \cdots (n - k + 1) a_n (z - z_0)^{n-k}
\]

em \(D(z_0, R) \). Temos:

\[
f^{(k)}(z_0) = k! a_k
\]

Demonstração:

Basta ver que \(f' \) satisfaz as mesmas hipóteses que \(f \) no Teorema 6.3

Corolário 6.5. Se \(f \) é uma função holomorfa em \(D(z_0, R) \) definida pela série de potências

\[
\sum_{n=0}^{\infty} a_n (z - z_0)^n
\]

cujo raio de convergência é \(R > 0 \) então existe uma função \(g \), holomorfa em \(D(z_0, R) \) tal que \(g' = f \).

Demonstração:

Considere a série

\[
\sum_{n=0}^{\infty} \frac{a_n}{n+1} (z - z_0)^{n+1}
\]

(6.5)

O raio de convergência da série 6.5 é:
6.4 Representação em série de potências

\[\lim \inf \left| \frac{a_n}{n+1} \right| = \lim \inf \left| \frac{n+2}{n+1} \cdot \lim \inf \left| \frac{a_n}{a_{n+1}} \right| \right| = 1 \cdot R = R \]

Então a série (6.5) define uma função \(g : \mathbb{D}(z_0, R) \to \mathbb{C} \). Pelo teorema 6.3, \(g \) é holomorfa e \(g' = f \). \qed

6.4 Representação de funções holomorfas em séries de potências

Essa é uma ferramenta poderosíssima no estudo das funções holomorfas. Veja a definição abaixo:

Definição 6.6. Seja \(\Omega \subset \mathbb{C} \) um aberto e \(f \in \mathcal{H}(\Omega) \). Dizemos que \(f \) é representável por séries de potências em \(\Omega \) se em todo disco \(D(z_0, r) \subset \Omega \) existe uma série de potências \(\sum_{n=0}^{\infty} a_n (z - z_0)^n \) que converge para \(f(z) \), \(\forall z \in D(z_0, r) \)

Definição 6.7. A série \(\sum_{n=1}^{\infty} \frac{z^n}{n!} \) converge uniformemente em partes compactas de \(\mathbb{C} \) (veja o Exemplo 3.28), portanto esta série define uma função inteira. Esta função é conhecida como “função exponencial”, e é denotada por \(\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \forall z \in \mathbb{C} \)

Essa é a representação da função exponencial em série de potências, a mesma função estudada no capítulo 1.

Pela definição vemos que a função exponencial satisfaz às seguintes propriedades:

a) \(\exp'(z) = \exp(z) \);

b) \(e^0 = 1 \);

c) \(e^{z+w} = e^z e^w \) \(\forall z, w \in \mathbb{C} \)

a) e b) são verificada facilmente. Quanto a c) temos

\[
\left(\sum_{j=0}^{\infty} \frac{z^j}{j!} \right) \cdot \left(\sum_{k=0}^{\infty} \frac{w^k}{k!} \right) = \sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} \frac{n!}{j!(n-j)!} \cdot z^j w^{n-j} \right) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{j=0}^{n} \frac{n!}{j!(n-j)!} \cdot z^j w^{n-j} \right) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{j=0}^{n} \frac{n!}{j!(n-j)!} \cdot z^j w^{n-j} \right) = \sum_{n=0}^{\infty} \frac{(z+w)^n}{n!}
\]

Veja que a série que define a função exponencial em \(\mathbb{C} \) é a mesma série que define a função exponencial em \(\mathbb{R} \), na verdade, a exponencial real é a exponencial complexa restrita a \(\mathbb{R} \).

Definição 6.8. Da mesma forma que \(\exp \), as funções senh, cosh, sen e cos se estendem a funções inteiras cujas
representações em séries de potências são dadas pelas mesmas séries que as definem em R, ou seja

$$\text{senh}(z) = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}, \quad \forall z \in \mathbb{C}$$

$$\cosh(z) = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}, \quad \forall z \in \mathbb{C}$$

$$\text{sen}(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}, \quad \forall z \in \mathbb{C}$$

$$\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}, \quad \forall z \in \mathbb{C}$$

Estas séries, da mesma forma que a série de $\exp(z)$, convergem uniformemente em partes compactas de \mathbb{C}, portanto são funções inteiras.

Baseados nas definições 6.7 e 6.8 temos as seguintes relações, que daremos em forma de proposição:

Proposição 6.9.
Valem as seguintes identidades:

a) $\text{senh}(z) + \cosh(z) = e^z$

b) $\text{sen}(iz) = i \text{sen}(z)$

c) $\cosh(iz) = \cos(z)$

d) $e^{iz} = \cos(z) + i \text{sen}(z)$

Demonstração:

Para o item a) veja que a série de $\text{senh}(z)$ contém todos os termos ímpares da série de $\exp(z)$ e $\cosh(z)$ contém todos os termos pares.

Para os itens b) e c) veja que $\forall n \in \mathbb{N}$ temos

$$i^{2n} = (i^2)^n = (-1)^n$$

e

$$i^{2n+1} = i \cdot i^{2n} = i \cdot (-1)^n i$$

logo

$$(iz)^{2n} = i^{2n} z^{2n} = (-1)^n z^{2n}$$

e

$$(iz)^{2n+1} = i^{2n+1} z^{2n+1} = i \cdot (-1)^n z^{2n+1}$$

Para o item d) é só combinar os resultados dos itens a), b) e c).

Definição 6.10.
Um “ramo de logaritmo” é uma função contínua $f : U \rightarrow \mathbb{C}$, onde $U \subset \mathbb{C}^+$ é um aberto simplesmente conexo, tal que

$$\text{e}^{f(z)} = z, \forall z \in U$$

Observe que se $f : U \rightarrow \mathbb{C}$ e $g : V \rightarrow \mathbb{C}$ são ramos de logaritmo e $U \cap V \neq \emptyset$ então $f(z) - g(z) = 2k\pi i \forall z \in U \cap V$, para algum $k \in \mathbb{Z}$. De fato, seja $z \in U \cap V$ então

$$\frac{e^{f(z)} - g(z)}{e^{g(z)}} = \frac{z}{z} = 1$$
6.4 Representação em série de potências

Logo \(e^{f(z)} - g(z) = \cos(2k\pi) + i\sin(2k\pi) \) para algum \(k \in \mathbb{Z} \).

Pela proposição 4.29 um ramo de logaritmo \(f : U \to \mathbb{C} \) é uma função holomorfa e

\[
f'(z) = \frac{1}{\exp'(f(z))} = \frac{1}{\exp(f(z))} = \frac{1}{z}
\]

Seja \(U = \{\rho e^{i\theta} \in \mathbb{C} \mid \rho > 0, \ \theta \in (-\pi, \pi)\} \). \(U \subset \mathbb{C} \) é aberto simplesmente conexo. No capítulo 1 definimos o “Ramo Principal do Logaritmo”

\[
\text{Log} : \quad U \to \mathbb{C} \\
\rho e^{i\theta} \mapsto \log(\rho) + i\theta
\]

Pelo que vimos acima, concluímos que \(\text{Log} \) é holomorfa em \(U \) e \(\text{Log}'(z) = \frac{1}{z} \) para todo \(z \in U \).

Definição 6.11. Seja \(\alpha \in \mathbb{C} \). Definimos um ramo das potências de \(\alpha \) por

\[
\alpha^z = e^{zg(\alpha)}
\]

Onde \(g \) é um ramo de logaritmo definido em \(\alpha \).

Neste termos, função \(z \mapsto \alpha^z \) é holomorfa.

Quando não for especificado o ramo de logaritmo usado para definir o ramo da potência e \(\alpha \not\in \mathbb{R}_- \), estaremos usando o Ramo Principal do Logaritmo.

Teorema 6.12. Seja \(\Omega \subset \mathbb{C} \) um aberto e \(f \in \mathcal{H}(\Omega) \). Então \(f \) é representável em séries de potências.

Demonstração:

Seja \(D(z_0, r) \subset \Omega \) tal que \(\overline{D}(z_0, r) \subset \Omega \), tomemos a curva de Jordan \(\gamma = \partial D(z_0, r) \). Pelo teorema 5.13 temos

\[
f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} \, dw, \forall z \in D(z_0, r)
\]

Para todo \(w \in \gamma \) e \(z \in D(z_0, r) \) temos

\[
\left| \frac{z - z_0}{w - z_0} \right| = \left| \frac{z - z_0}{r} \right| < 1
\]

Portanto, inspirados (novamente) na série geométrica, temos

\[
\sum_{n=0}^{\infty} \left(\frac{z - z_0}{w - z_0} \right)^n = \frac{1}{w - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{w - z_0}} = \frac{1}{w - z}
\]

Logo

\[
\frac{f(w)}{w - z} = f(w) \cdot \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(w - z_0)^{n+1}}
\]
Esta série converge uniformemente nas partes compactas de $\mathbb{D}(z_0, r)$. Logo

\[
f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} dw
\]

\[
= \frac{1}{2\pi i} \int_{\gamma} \left(f(w) \cdot \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(w-z_0)^{n+1}} \right) dw
\]

\[
= \frac{1}{2\pi i} \sum_{n=0}^{\infty} \left(\int_{\gamma} \frac{f(w)dw}{(w-z_0)^{n+1}} \right) (z-z_0)^n
\]

\[
= \sum_{n=0}^{\infty} a_n (z-z_0)^n
\]

Onde

\[
a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)dw}{(w-z_0)^{n+1}}
\]

Pelo teorema 5.13 os coeficientes a_n independem de r. Portanto $f(z)$ é representada por esta série de potências no disco $\mathbb{D}(z_0, R)$, onde R é o raio de convergência da série.

Corolário 6.13. Seja $\Omega \subset \mathbb{C}$ um aberto e $f \in \mathcal{H}(\Omega)$ então f possui derivadas de todas as ordens em todos os pontos de Ω e, para todo $\mathbb{D}(z_0, r) \subset \Omega$, temos

\[
f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)dw}{(w-z_0)^{n+1}}
\]

onde $\gamma = \partial \mathbb{D}(z_0, r)$.

Demonstração:

Basta combinar o corolário 6.13 com o teorema 6.3.

Corolário 6.14 (Estimativas de Cauchy). Seja f uma função holomorfa no disco $\mathbb{D}(z_0, R)$ e $M > 0$ tal que $f(z) \leq M \forall z \in \mathbb{D}(z_0, R)$. Então

\[
|f^{(n)}(z_0)| = \frac{n!M}{R^n}
\]

Demonstração:

Pelo corolário 6.13, para todo $r < R$, temos

\[
f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)dw}{(w-z_0)^{n+1}}
\]
6.4 Representação em série de potências

onde $\gamma = \partial D(z_0, r)$, logo

$$|f^{(n)}(z_0)| = \left| \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)dw}{(w - z_0)^{n+1}} \right|$$

$$\leq \frac{n!}{2\pi} \int_{\gamma} \left| \frac{f(w)dw}{(w - z_0)^{n+1}} \right|$$

$$= \frac{n!}{2\pi} \int_{\gamma} \frac{|f(w)|}{|w - z_0|^{n+1}} |dw|$$

$$\leq \frac{n!}{2\pi} \int_{\gamma} \frac{M}{r^{n+1}} |dw|$$

$$= \frac{n!}{2\pi} \cdot \frac{M}{r^{n+1}} \cdot 2\pi r$$

$$= \frac{n!M}{r^n}$$

Como $r < R$ foi tomado aleatoriamente temos

$$|f^{(n)}(z_0)| \leq \frac{n!M}{R^n}$$

□

Teorema 6.15 (Teorema de Morera). Seja $\Omega \subset \mathbb{C}$ um aberto e $f : \Omega \to \mathbb{C}$ uma função contínua tal que

$$\int_{\Delta} f(z)dz = 0$$

para todo triângulo fechado $\Delta \subset \Omega$. Então $f \in \mathcal{H}(\Omega)$.

Demonstração:

Se $\Omega \subset \Omega$ é convexo, podemos usar o Teorema 5.11 para construir $F \in \mathcal{H}(\Omega)$ tal que $F' = f$. Visto que derivadas de funções holomorfas é uma função holomorfa, concluímos que f é holomorfa em Ω. Portanto f é holomorfa em qualquer subconjunto convexo de Ω, logo $f \in \mathcal{H}(\Omega)$. □

Teorema 6.16. Seja $\Omega \subset \mathbb{C}$ um aberto e seja (f_n) uma sequência em $\mathcal{H}(\Omega)$. Seja $f : \Omega \to \mathbb{C}$ tal que $f_n \xrightarrow{u.p.c.} f$ em Ω. Então

i) f é holomorfa;

ii) (f_n') converge em partes compactas de Ω;

iii) $f' = \lim f_n'$.

Demonstração:

Como a convergência é uniforme então f é contínua.

Considere um triângulo fechado $\Delta \subset \Omega$ qualquer. Então, pelo teorema 5.10 temos

$$\int_{\partial \Delta} f(z)dz = \lim \left(\int_{\partial \Delta} f_n(z)dz \right) = 0$$

Pelo Teorema de Morera (teorema 6.15) f é holomorfa. Isso prova i)
Seja $\mathbb{D}(z_0, r) \subset \Omega$. Tomemos $\epsilon > 0$. Como f_n converge uniformemente a f, então $\exists N \in \mathbb{N}$ tal que $|f(z) - f_n(z)| < \epsilon \forall z \in \mathbb{D}(z_0, r)$, sempre que $n > N$. Então, aplicando o teorema 6.14 à função $(f - f_n)$ temos

$$|f'(z) - f'_n(z)| < \frac{\epsilon}{r}$$

Isso mostra que $f_n \xrightarrow{u.p.c.} f'$. E estão provados ii) e iii)

Exemplo 6.17. A série $\sum_{n=1}^{\infty} n^{-z}$ converge uniformemente em partes compactas do semi-plano aberto $\{z \in \mathbb{C} | \text{Re}(z) > 1\}$ (veja o Exemplo 3.30), portanto esta série define uma função holomorfa no aberto $\{z \in \mathbb{C} | \text{Re}(z) > 1\}$. Esta função é conhecida como “Função Zeta de Riemann”, e é denotada por

$$\zeta(z) = \sum_{n=1}^{\infty} n^{-z}, \text{Re}(z) > 1$$

6.5 Produtórios de funções holomorfas

Seja $\Omega \subset \mathbb{C}$ uma região. Um produtório de funções em $\mathcal{H}(\Omega)$, é uma sequência de funções (p_n) obtida a partir de uma sequência de funções (f_n) em $\mathcal{H}(\Omega)$, da seguinte forma:

$$p_n(z) = (1 + f_1(z)) \cdot (1 + f_2(z)) \cdot \cdots \cdot (1 + f_n(z))$$

ou seja

$$p_n(z) = \prod_{i=1}^{n} (1 + f_i(z))$$

Denotamos esse produtório por:

$$\prod_{n=1}^{\infty} (1 + f_n(z)) \quad (6.6)$$

Se a sequência (p_n) converge em Ω dizemos o mesmo para o produtório (6.6), caso contrário, dizemos que o produtório diverge. Se a sequência (p_n) converge uniformemente em partes compactas de Ω dizemos o mesmo para o produtório (6.6).

De acordo com o que foi mostrado em 3.3, para que o produtório (6.6) seja convergente nas partes compactas de Ω, basta que a série

$$\sum_{n=1}^{\infty} |f_n(z)|$$

também seja.

Exemplo 6.18. Seja (q_n) a sequência dos números primos, então o produtório

$$\prod_{n=1}^{\infty} (1 - q_n^{-z})^{-1}$$

converge uniformemente em partes compactas de $\{z \in \mathbb{C} | \text{Re}(z) > 1\}$, portanto define uma função holomorfa neste aberto e não se anula em ponto algum deste aberto (veja o Exemplo 3.36) e temos também:

$$\prod_{n=1}^{\infty} (1 - q_n^{-z})^{-1} = \sum_{n=1}^{\infty} n^{-z} = \zeta(z)$$

6.6 Zeros de funções holomorfas

Definição 6.19. Sejam Ω um aberto e $f \in \mathcal{H}(\Omega)$. Um ponto z_0 é chamado “zero” de f se $f(z_0) = 0$. Dizemos que esse zero tem “ordem k” se

$$f(z_0) = f'(z_0) = \cdots = f^{(k-1)}(z_0) = 0$$
e \(f^{(k)}(z_0) \neq 0 \).

Note que se \(z_0 \) é um zero de ordem \(k \) de \(f \) então a representação de \(f \) em séries de potências em \(z_0 \) é da forma
\[
\sum_{n=k}^{\infty} a_n (z - z_0)^n
\]
Onde \(a_k \neq 0 \).

Teorema 6.20. Sejam \(\Omega \) uma região e \(f \in \mathcal{H}(\Omega) \). Se \(f \) não é identicamente nula então conjunto dos zeros de \(f \) é discreto.

Demonstração:

Seja \(z_0 \) um zero de \(f \) e seja
\[
f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n
\]
a representação em série de potências de \(f \) em \(z_0 \).

Suponha que exista algum \(a_k \neq 0 \), tal que \(a_0 = a_1 = \cdots = a_{k-1} = 0 \). Então
\[
f(z) = \sum_{n=k}^{\infty} a_n (z - z_0)^n
\]
em \(D(z_0, r) \subset \Omega \), com \(a_k \neq 0 \), e podemos escrever
\[
f(z) = (z - z_0)^k g(z)
\]
(6.7)
Onde \(g(z) = \sum_{n=0}^{\infty} a_{n+k} (z - z_0)^n \).

\(g(z_0) = a_k \neq 0 \) e \(g \) é holomorfa em \(D(z_0, r) \) (basta aplicar o teste da razão).

Como \(g \) é holomorfa então é contínua, logo existe \(\delta > 0 \), com \(\delta \leq r \) tal que
\[
|g(z) - g(z_0)| < \frac{|a_k|}{2}
\]
sempre que \(z \in D(z_0, \delta) \).

\[
|g(z_0)| = | - g(z_0)| = |g(z) - g(z_0) - g(z)| \leq |g(z) - g(z_0)| + |g(z)|
\]
Logo, se \(z \in D(z_0, \delta) \) temos
\[
|g(z)| \geq |g(z_0)| - |g(z) - g(z_0)| > |a_k| - \frac{|a_k|}{2} = \frac{|a_k|}{2} > 0
\]
Pela equação (6.7) o único zero de \(f \) em \(D(z_0, \delta) \) é \(z_0 \).

Concluimos, assim, que se \(z_0 \) não é um zero isolado então \(a_n = 0 \ \forall n \), ou seja \(f(z) = 0 \ \forall z \in D(z_0, r) \).

Seja \(Z(f) = \{ z \in \Omega \mid f(z) = 0 \} \) e seja \(A \subset \mathbb{C} \) o conjunto dos pontos de acumulação de \(Z(f) \) então \(A \) é um conjunto fechado. Como \(f \) é contínua então \(A \cap \Omega \subset Z(f) \). Se \(A \neq \emptyset \) então, pelo que vimos acima \(A \cap \Omega \) é aberto em \(\Omega \). Como \(A \cap \Omega \) também um fechado em \(\Omega \) concluímos que \(A \cap \Omega = \Omega \), pois \(\Omega \) é conexo.

Ou seja, \(f \) é identicamente nula. \(\square \)
Corolário 6.21. Seja \(\Omega \subset \mathbb{C} \) um aberto e sejam \(f, g \in \mathcal{H}(\Omega) \). Se o conjunto \(\{ z \in \Omega \mid f(z) = g(z) \} \) não é discreto então \(f(z) = g(z) \), para todo \(z \in \Omega \).

Demonstração:
Basta usar o resultado do teorema para a função \(h(z) = f(z) - g(z) \).

Definição 6.22. Definimos as seguintes funções inteiras

\[
E_0(z) = (1 - z)
\]

\[
E_k(z) = (1 - z) \exp \left(z + \frac{z^2}{2} + \cdots + \frac{z^k}{k} \right), \text{ se } k > 0
\]

Lema 6.23. Se \(|z| \leq 1 \) então \(|1 - E_k(z)| \leq |z|^{k+1}, k = 0, 1, 2, \ldots \)

Demonstração:
Se \(k = 0 \), nada temos a fazer.

Suponha \(k > 1 \). Primeiro observemos que \(1 - E_k(0) = 0 \). E que

\[
\frac{d}{dz}(1 - E_k(z)) = -E'_k(z) = z^k \exp \left(z + \frac{z^2}{2} + \cdots + \frac{z^k}{k} \right)
\]

\[
\frac{d}{dz}(1 - E_k(z)) \text{ tem um zero de ordem } k \text{ em } z = 0, \text{ logo } z = 0 \text{ é um zero de ordem } k + 1 \text{ de } 1 - E_k(z), \text{ portanto temos}
\]

\[
\frac{1 - E_k(z)}{z^{k+1}} = \sum_{n=k+1} a_n z^n
\]

Onde \(a_n > 0 \) \(\forall n \), logo, se \(|z| \leq 1 \) temos

\[
\left| \frac{1 - E_k(z)}{z^{k+1}} \right| \leq \sum_{n=k+1} a_n |z^n| \leq \sum_{n=k+1} a_n = \frac{1 - E_k(1)}{1^{k+1}} = 1
\]

Ou seja, \(|1 - E_k(z)| \leq |z|^{k+1} \).

Teorema 6.24. Seja \((z_n) \) uma sequência discreta de números complexos tal que \(z_n \neq 0 \ \forall n \in \mathbb{N} \). Seja \((p_n) \) uma sequência de inteiros positivos tais que a série

\[
\sum_{n=1}^{\infty} \left| \frac{z}{z_n} \right|^{p_n + 1}
\]

converge para todo \(z \in \mathbb{C} \). Então o produtório

\[
f(z) = \prod_{n=1}^{\infty} E_{p_n} \left(\frac{z}{z_n} \right)
\]

Define uma função inteira cujo conjunto dos zeros são os pontos da sequência \((z^n) \). Mas precisamente, se \(a \in \mathbb{C} \) é um ponto que aparece \(m \) vezes na sequência \((z^n) \) então \(a \) é um zero de ordem \(m \) de \(f \).
Demonstração:

Fixemos $r > 0$. Primeiro veja que $\lim |z_n| = \infty$, pois (z_n) é discreta. Logo, para todo $z \in \overline{D}(0,r)$, $\exists N \in \mathbb{N}$ tal que $\left|\frac{z}{z_n}\right| < \frac{1}{2}$ sempre que $n > N$, portanto, sempre existe a sequência (p_n), por exemplo $p_n = n - 1$ (veja a série geométrica no exemplo 3.23).

Pelo lema 6.23

$$\left|1 - E_{p_n} \left(\frac{z}{z_n}\right)\right| \leq \left|\frac{z}{z_n}\right|^{p_n+1}$$

Logo

$$\sum_{n=1}^{\infty} \left|1 - E_{p_n} \left(\frac{z}{z_n}\right)\right|$$

Converge uniformemente nas partes partes compactas de \mathbb{C}. Mostrando que o mesmo vale para

$$f(z) = \prod_{n=1}^{\infty} E_{p_n} \left(\frac{z}{z_n}\right)$$

(Veja a seção 6.5).

Teorema 6.25. Seja $\Omega \subset \mathbb{C}$ um aberto, com $\Omega \neq \mathbb{C}$. Seja (z_n) uma sequência discreta de números complexos em Ω e seja (p_n) uma sequência de números inteiros positivos. Existe uma função $f \in \mathcal{H}(\Omega)$ tal que o conjunto dos zeros de f são os pontos da sequência (z_n) e cada z_n e um zero de ordem p_n.

Demonstração:

Primeiro adequamos a sequência (z_n), de forma que cada termo z_n aparezca p_n vezes. Agora construimos uma sequência (w_n) em $\mathbb{C} - \Omega$ da seguinte forma: para cada z_n escolha $w_n \in \mathbb{C} - \Omega$ tal que $|w_n - z_n| \leq |w - z_n| \forall w \in \mathbb{C} - \Omega$, é claro que $w_n \in \partial \Omega$. Então temos

$$\lim (z_n - w_n) = 0$$

Definimos

$$f(z) = \prod_{n=1}^{\infty} E_n \left(\frac{z_n - w_n}{z - w_n}\right)$$

Para todo $z \in \Omega$ temos

$$\lim \frac{z_n - w_n}{z - w_n} = 0$$

portanto, se fixarmos um compacto $K \subset \Omega$, encontramos $N \in \mathbb{N}$ tal que

$$\left|\frac{z_n - w_n}{z - w_n}\right| < \frac{1}{2}$$

$\forall z \in K$, sempre que $n > N$.

Pelo lema 6.23

$$\left|1 - E_n \left(\frac{z_n - w_n}{z - w_n}\right)\right| \leq \left|\frac{z_n - w_n}{z - w_n}\right|^{n+1} < \left(\frac{1}{2}\right)^{n+1}$$

Logo

$$\sum_{n=1}^{\infty} \left|1 - E_n \left(\frac{z_n - w_n}{z - w_n}\right)\right|$$

Converge uniformemente nas partes partes compactas de Ω. Mostrando que o mesmo vale para

$$f(z) = \prod_{n=1}^{\infty} E_n \left(\frac{z_n - w_n}{z - w_n}\right)$$

(Veja a seção 6.5).
Exemplo 6.26. Considere a sequência \(\left(1 - \frac{1}{n} \right) e^{i\theta} \). Essa sequência é discreta em \(D(0, 1) \), mas todo ponto de \(\partial D(0, 1) \) é ponto de acumulação desta sequência. Pelo teorema 6.25 existe uma função holomorfa em \(D(0, 1) \) cujo conjunto dos zeros são os pontos desta sequência. Portanto é impossível estender esta função além para fora de \(D(0, 1) \).
Referências Bibliográficas

Índice Remissivo

bordo, 18

caminho, 50
 fechado, 50
 suave, 50
 suave por partes, 50
componente conexa, 18
comprimento de um caminho, 51
Condições de Cauchy-Riemann, 44
conjugado, 9
conjunto
 conexo, 18
 aberto, 17
 compacto, 17
 convexo, 18
 fechado, 17
 simplesmente conexo, 18
curva, 50
disco, 17
disco furado, 17
fecho, 18
função holomorfa, 45
função inteira, 45

interior, 17

lim inf, 27
lim sup, 27

módulo, 10

orientação de um caminho, 51

parametrização, 50
ponto de acumulação, 18
ponto isolado, 18

Ramo Principal do Logaritmo, 15, 65
Região, 37

série, 25

valor absoluto, 10